Câu hỏi:

30/01/2026 16 Lưu

Cho tam giác đều \(ABC\) nội tiếp đường tròn \(\left( O \right)\) như hình vẽ sau. Phép quay ngược chiều \(60^\circ \) tâm \(O\) biến các điểm \(A,B,C\) lần lượt thành các điểm\(D,E,F\). Chứng minh rằng là một lục giác đều.
Phép quay ngược chiều \(60^\circ \) (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Phép quay ngược chiều \(60^\circ \) tâm \(O\) biến các điểm \(A,B,C\) lần lượt thành các điểm\(D,E,F\)\( \Rightarrow \) các tam giác \(AOD,\,DOB,\,BOE,\,EOC,\,COF\) là các tam giác đều

\( \Rightarrow \)\(AD = DB = BE = EC = CF\)và \(\widehat {ADB} = \widehat {DBE} = \widehat {BEC} = \widehat {ECF} = \widehat {CFA} = \widehat {FAD} = 120^\circ \)

Do đó \(ADBECF\) là một lục giác đều.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình vuông \(ABCD\) có độ dài cạnh (ảnh 1)

a) Ta có BAM^+MAD^=BAD^=90° (1). Lại có \(Ax \bot Ay\) nên xAy^=90°   hay MAD^+DAN^=90°(2)

Từ (1) và (2) \( \Rightarrow \widehat {{\rm{BAM}}} = \widehat {{\rm{DAN}}}\)nên hai tam giác vuông \(ABM\)và \(AND\)bằng nhau theo trường hợp g.c.g.

\( \Rightarrow {\rm{AM}} = {\rm{AN}}\)

b) Tam giác \(AMN\) vuông cân tại \(A\), có \(AO\) là đường trung tuyến nên đồng thời là đường cao hay \(AO \bot MN\) hay AOM^=90°. Dễ thấy tứ giác \[ABMO\] có ABM^=AOM^=90°

ABM^+AOM^=180° nên \[ABMO\] là tứ giác nội tiếp.

Lại có AON^=ADN^=90°, chứng tỏ bốn điểm \(A,O,D,N\) cùng thuộc một đường tròn đường kính \(AN\) hay tứ giác \[ANDO\]nội tiếp.

c) Ta có tứ giác\[\;ABMO\] nội tiếp (cmt) \( \Rightarrow \widehat {{\rm{BOM}}} = \widehat {{\rm{BAM}}}\) (góc nội tiếp cùng chắn cung ),\(\widehat {{\rm{BAM}}} = \widehat {{\rm{DAN}}}({\rm{cmt}})\). Lại có tứ giác \[ANDO\] nội tiếp (cmt) \( \Rightarrow \widehat {{\rm{DAN}}} = \widehat {{\rm{DON}}}\) (góc nội tiếp cùng chắn cung)

\( \Rightarrow \widehat {{\rm{BOM}}} = \widehat {{\rm{DON}}}\), mà ba điểm \(M,O,N\) thẳng hàng (gt)\( \Rightarrow B,D,O\)thẳng hàng.

Lời giải

Cho tam giác \(ABC\) có các đư (ảnh 1)

a) Dễ thấy AEH^=AFH^=90° (gt).

Tứ giác \[AEHF\] có AEH^+AFH^=180° (gt) nên nội tiếp đường tròn tâm \(I\).

b) Ta có tam giác \(BEC\) vuông tại \(E\) (gt), \(EM\) là trung tuyến

\( \Rightarrow EM = BM = CM\) hay  cân tại M \[ \Rightarrow \widehat {{B_2}} = \widehat {{E_2}}\]

Lại có \(H,E\) thuộc đường tròn tâm \(I\) nên  cân tại I \( \Rightarrow \widehat {{H_2}} = \widehat {{E_1}}\) mà \(\widehat {{H_1}} = \widehat {{H_2}}\) (đối đỉnh) \( \Rightarrow \widehat {{E_1}} = \widehat {{H_2}}\)

Gọi K là chân đường cao kẻ từ A đến BC, ta có tam giác BKH vuông tại K

Gọi K là chân đường cao kẻ từ A đến BC, ta có tam giác BKH vuông tại K

B2^+H2^=90° mà B2^=E2^,H2^=E1^(cmt)E2^+E1^=90° hay IEM^=90°MEIE

Chứng tỏ \(ME\) tiếp xúc với đường tròn \(\left( I \right)\)ngoại tiếp tứ giác \[AEHF\].

Chứng minh tương tự ta có \(MF\) tiếp xúc với \(\left( I \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP