Câu hỏi:

30/01/2026 11 Lưu

Hình lục giác đều cạnh 6 cm được cho như hình vẽ. Dựng 6 cung tròn, mỗi cung tròn có tâm là một đỉnh của lục giác và có bán kính bằng 3 cm. Hỏi diện tích phần màu xám trong hình vẽ bằng bao nhiêu?

Hình lục giác đều cạnh 6 cm được cho như hình vẽ. Dựng 6 cung tròn, mỗi cung tròn có tâm là một đỉnh của lục giác và có bán kính bằng 3 cm. Hỏi diện tích phần màu xám trong hình vẽ bằng bao nhiêu? (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có số đo mỗi góc của lục giác đều là \(120^\circ \).

Diện tích hình quạt tạo bởi 1 cung tròn là \(\frac{{\pi {{.3}^2}.120}}{{360}} = 3\pi \left( {c{m^2}} \right)\).

Diện tích 6 hình quạt tạo bởi 6 cung tròn là \(3\pi .6 = 18\pi \left( {c{m^2}} \right)\).

Diện tích tam giác đều cạnh 6 cm là \(\frac{{{6^2}\sqrt 3 }}{4} = 9\sqrt 3 \left( {\;c{m^2}} \right)\).

Diện tích hình lục giác đều là \(9\sqrt 3 .6 = 54\sqrt 3 \left( {\;c{m^2}} \right)\). Diện tích phần tô màu xám là \(54\sqrt 3  - 18\pi  \approx 36,98\left( {\;c{m^2}} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình vuông \(ABCD\) có độ dài cạnh (ảnh 1)

a) Ta có BAM^+MAD^=BAD^=90° (1). Lại có \(Ax \bot Ay\) nên xAy^=90°   hay MAD^+DAN^=90°(2)

Từ (1) và (2) \( \Rightarrow \widehat {{\rm{BAM}}} = \widehat {{\rm{DAN}}}\)nên hai tam giác vuông \(ABM\)và \(AND\)bằng nhau theo trường hợp g.c.g.

\( \Rightarrow {\rm{AM}} = {\rm{AN}}\)

b) Tam giác \(AMN\) vuông cân tại \(A\), có \(AO\) là đường trung tuyến nên đồng thời là đường cao hay \(AO \bot MN\) hay AOM^=90°. Dễ thấy tứ giác \[ABMO\] có ABM^=AOM^=90°

ABM^+AOM^=180° nên \[ABMO\] là tứ giác nội tiếp.

Lại có AON^=ADN^=90°, chứng tỏ bốn điểm \(A,O,D,N\) cùng thuộc một đường tròn đường kính \(AN\) hay tứ giác \[ANDO\]nội tiếp.

c) Ta có tứ giác\[\;ABMO\] nội tiếp (cmt) \( \Rightarrow \widehat {{\rm{BOM}}} = \widehat {{\rm{BAM}}}\) (góc nội tiếp cùng chắn cung ),\(\widehat {{\rm{BAM}}} = \widehat {{\rm{DAN}}}({\rm{cmt}})\). Lại có tứ giác \[ANDO\] nội tiếp (cmt) \( \Rightarrow \widehat {{\rm{DAN}}} = \widehat {{\rm{DON}}}\) (góc nội tiếp cùng chắn cung)

\( \Rightarrow \widehat {{\rm{BOM}}} = \widehat {{\rm{DON}}}\), mà ba điểm \(M,O,N\) thẳng hàng (gt)\( \Rightarrow B,D,O\)thẳng hàng.

Lời giải

Cho tam giác \(ABC\) có các đư (ảnh 1)

a) Dễ thấy AEH^=AFH^=90° (gt).

Tứ giác \[AEHF\] có AEH^+AFH^=180° (gt) nên nội tiếp đường tròn tâm \(I\).

b) Ta có tam giác \(BEC\) vuông tại \(E\) (gt), \(EM\) là trung tuyến

\( \Rightarrow EM = BM = CM\) hay  cân tại M \[ \Rightarrow \widehat {{B_2}} = \widehat {{E_2}}\]

Lại có \(H,E\) thuộc đường tròn tâm \(I\) nên  cân tại I \( \Rightarrow \widehat {{H_2}} = \widehat {{E_1}}\) mà \(\widehat {{H_1}} = \widehat {{H_2}}\) (đối đỉnh) \( \Rightarrow \widehat {{E_1}} = \widehat {{H_2}}\)

Gọi K là chân đường cao kẻ từ A đến BC, ta có tam giác BKH vuông tại K

Gọi K là chân đường cao kẻ từ A đến BC, ta có tam giác BKH vuông tại K

B2^+H2^=90° mà B2^=E2^,H2^=E1^(cmt)E2^+E1^=90° hay IEM^=90°MEIE

Chứng tỏ \(ME\) tiếp xúc với đường tròn \(\left( I \right)\)ngoại tiếp tứ giác \[AEHF\].

Chứng minh tương tự ta có \(MF\) tiếp xúc với \(\left( I \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP