Hình lục giác đều cạnh 6 cm được cho như hình vẽ. Dựng 6 cung tròn, mỗi cung tròn có tâm là một đỉnh của lục giác và có bán kính bằng 3 cm. Hỏi diện tích phần màu xám trong hình vẽ bằng bao nhiêu?

Hình lục giác đều cạnh 6 cm được cho như hình vẽ. Dựng 6 cung tròn, mỗi cung tròn có tâm là một đỉnh của lục giác và có bán kính bằng 3 cm. Hỏi diện tích phần màu xám trong hình vẽ bằng bao nhiêu?

Quảng cáo
Trả lời:
Ta có số đo mỗi góc của lục giác đều là \(120^\circ \).
Diện tích hình quạt tạo bởi 1 cung tròn là \(\frac{{\pi {{.3}^2}.120}}{{360}} = 3\pi \left( {c{m^2}} \right)\).
Diện tích 6 hình quạt tạo bởi 6 cung tròn là \(3\pi .6 = 18\pi \left( {c{m^2}} \right)\).
Diện tích tam giác đều cạnh 6 cm là \(\frac{{{6^2}\sqrt 3 }}{4} = 9\sqrt 3 \left( {\;c{m^2}} \right)\).
Diện tích hình lục giác đều là \(9\sqrt 3 .6 = 54\sqrt 3 \left( {\;c{m^2}} \right)\). Diện tích phần tô màu xám là \(54\sqrt 3 - 18\pi \approx 36,98\left( {\;c{m^2}} \right)\).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

a) Ta có (1). Lại có \(Ax \bot Ay\) nên
Từ (1) và (2) \( \Rightarrow \widehat {{\rm{BAM}}} = \widehat {{\rm{DAN}}}\)nên hai tam giác vuông \(ABM\)và \(AND\)bằng nhau theo trường hợp g.c.g.
\( \Rightarrow {\rm{AM}} = {\rm{AN}}\)
b) Tam giác \(AMN\) vuông cân tại \(A\), có \(AO\) là đường trung tuyến nên đồng thời là đường cao hay \(AO \bot MN\) hay . Dễ thấy tứ giác \[ABMO\] có
nên \[ABMO\] là tứ giác nội tiếp.
Lại có , chứng tỏ bốn điểm \(A,O,D,N\) cùng thuộc một đường tròn đường kính \(AN\) hay tứ giác \[ANDO\]nội tiếp.
c) Ta có tứ giác\[\;ABMO\] nội tiếp (cmt) \( \Rightarrow \widehat {{\rm{BOM}}} = \widehat {{\rm{BAM}}}\) (góc nội tiếp cùng chắn cung ),\(\widehat {{\rm{BAM}}} = \widehat {{\rm{DAN}}}({\rm{cmt}})\). Lại có tứ giác \[ANDO\] nội tiếp (cmt) \( \Rightarrow \widehat {{\rm{DAN}}} = \widehat {{\rm{DON}}}\) (góc nội tiếp cùng chắn cung)
\( \Rightarrow \widehat {{\rm{BOM}}} = \widehat {{\rm{DON}}}\), mà ba điểm \(M,O,N\) thẳng hàng (gt)\( \Rightarrow B,D,O\)thẳng hàng.
Lời giải

Dễ thấy (vì \(AM\) là đường kính). Tam giác \(ACM\) vuông tại
Lại có tam giác \(AHB\) vuông tại \(H\) (gt)
Mà \(\widehat {{\rm{AMC}}} = \widehat {{\rm{ABC}}}\) (góc nội tiếp cùng chắn cung)\( \Rightarrow \widehat {{\rm{OAC}}} = \widehat {{\rm{BAH}}}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.