Câu hỏi:

30/01/2026 37 Lưu

Một hòn đá được ném lên theo phương thẳng đứng, bỏ qua lực cản của không khí, với vận tốc ban đầu là \(10\left( {m/s} \right)\), lấy \[g = 10\left( {m/{s^2}} \right)\]. Khi lên đến điểm cao nhất hòn đá rơi thẳng đứng đến khi chạm đất. Tính thời gian viên đá bay từ lúc ném lên đến khi chạm đất.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án:

\[2\left( s \right)\].

+ Vận tốc khi viên đá bay lên là \[{v_1}\left( t \right) = \int { - g{\rm{d}}t}  = \int { - 10} {\rm{d}}t =  - 10t + C\].

+ Theo giả thiết ta có \[{v_1}\left( 0 \right) = 10 \Rightarrow C = 10 \Rightarrow {v_1}\left( t \right) =  - 10t + 10\].

+ Đến vị trí cao nhất thì viên đá dừng, ta có.

+ Quãng đường từ lúc ném đến khi viên đá đạt độ cao nhất là:

\[{S_1}\left( t \right) = \int {{v_1}\left( t \right){\rm{d}}t}  = \int {\left( { - 10t + 10} \right)} {\rm{d}}t =  - 5{t^2} + 10t + {C_1}\]

+ Ta có \[{S_1}\left( 0 \right) = 0 \Rightarrow {C_1} = 0\]\[ \Rightarrow {S_1}\left( t \right) =  - 5{t^2} + 10t\].

+ Sau \[1\left( s \right)\] viên đá đạt độ cao \[ \Rightarrow {S_1}\left( 1 \right) = 5\left( m \right)\].

+ Vận tốc khi viên đá rơi xuống là \[{v_2}\left( t \right) = \int {g{\rm{d}}t}  = \int {10} {\rm{d}}t = 10t + {C_2}\].

+ Lúc bắt đầu rơi \[{v_2}\left( 0 \right) = 0 \Rightarrow {C_2} = 0 \Rightarrow {v_2}\left( t \right) = 10t\].

+ Quãng đường viên đá rơi xuống là: \[{S_2}\left( t \right) = \int {{v_2}\left( t \right){\rm{d}}t}  = \int {10t} {\rm{d}}t = 5{t^2} + {C_3}\].

+ Ta có \[{S_2}\left( 0 \right) = 0 \Rightarrow {C_3} = 0\]\[ \Rightarrow {S_2}\left( t \right) = 5{t^2}\].

Do đó \[5{t^2} = 5 \Rightarrow t = 1\left( s \right)\], suy ra thời gian viên đá rơi đến khi chạm đất là \[1\left( s \right)\].

Vậy tổng thời gian viên đá từ lúc ném lên đến khi rơi xuống là \[2\left( s \right)\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

+) Ta có \(f\left( x \right) = \cos x.{\sin ^2}x = \cos x\left( {\frac{{1 - \cos 2x}}{2}} \right)\)\( = \frac{1}{2}\left( {\cos x - \cos x\cos 2x} \right)\)\( = \frac{1}{2}\cos x - \frac{1}{4}\left( {\cos 3x + \cos x} \right)\)\( = \frac{1}{4}\cos x - \frac{1}{4}\cos 3x\).

+) \(F\left( x \right) = \int {f\left( x \right){\rm{d}}x}  = \int {\left( {\frac{1}{4}\cos x - \frac{1}{4}\cos 3x} \right){\rm{d}}x} \)\( = \frac{1}{4}\sin \,x - \frac{1}{{12}}\sin \,3x + C\).

Lại có: \[F\left( 0 \right) = 2025\] \[ \Rightarrow C = 2025\]\( \Rightarrow F\left( x \right) = \frac{1}{4}\sin \,x - \frac{1}{{12}}\sin \,3x + 2025\)\( \Rightarrow F\left( {\frac{\pi }{2}} \right) = \frac{1}{4}\sin \,\frac{\pi }{2} - \frac{1}{{12}}\sin \,\frac{{3\pi }}{2} + 2025\)\( = \frac{1}{4} + \frac{1}{{12}} + 2025 = \frac{{6076}}{3} \approx 2025\).

Vậy \[F\left( {\frac{\pi }{2}} \right) \approx 2025\].

Lời giải

+) Ta có \(f\left( x \right) = x{\left( {2x - 1} \right)^{2025}}\)\( = \frac{1}{2}\left( {2x - 1 + 1} \right){\left( {2x - 1} \right)^{2025}}\)\( = \frac{1}{2}{\left( {2x - 1} \right)^{2026}} + \frac{1}{2}{\left( {2x - 1} \right)^{2025}}\)..

+) \(F\left( x \right) = \int {f\left( x \right){\rm{d}}x} \)\( = \int {\left( {\frac{1}{2}{{\left( {2x - 1} \right)}^{2026}} + \frac{1}{2}{{\left( {2x - 1} \right)}^{2025}}} \right){\rm{d}}x} \)\( = \frac{1}{4}\frac{{{{\left( {2x - 1} \right)}^{2027}}}}{{2027}} + \frac{1}{4}\frac{{{{\left( {2x - 1} \right)}^{2026}}}}{{2026}} + C\)\( = \frac{{{{\left( {2x - 1} \right)}^{2027}}}}{{8108}} + \frac{{{{\left( {2x - 1} \right)}^{2026}}}}{{8104}} + C\).

Lại có: \[F\left( {\frac{1}{2}} \right) = 1\] \[ \Rightarrow C = 1\]\( \Rightarrow F\left( x \right) = \frac{{{{\left( {2x - 1} \right)}^{2027}}}}{{8108}} + \frac{{{{\left( {2x - 1} \right)}^{2026}}}}{{8104}} + 1\)\( \Rightarrow F\left( 0 \right) = \frac{{{{\left( { - 1} \right)}^{2027}}}}{{8108}} + \frac{{{{\left( { - 1} \right)}^{2026}}}}{{8104}} + 1 \approx 1\).

Vậy \[F\left( 0 \right) \approx 1\].

Câu 3

A. \(I = \ln \left| {\frac{{{x^2} + x - 45}}{{{x^2} - x - 45}}} \right| + C\).                                       

B. \(I = \ln \left| {\frac{{{x^2} - x - 45}}{{{x^2} + x - 45}}} \right| + C\).

C. \(I = \frac{1}{2}\ln \left| {\frac{{{x^2} + x - 45}}{{{x^2} - x - 45}}} \right| + C\).            
D. \(I = \frac{1}{2}\ln \left| {\frac{{{x^2} - x - 45}}{{{x^2} + x - 45}}} \right| + C\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(I = \ln \left| {x - \frac{{2025}}{x}} \right| + C\).                                                                    

B. \(I = \ln \left| {1 - \frac{{2025}}{x}} \right| + C\).

C. \(I = \ln \left| {x + \frac{{2025}}{x}} \right| + C\).                      
D. \(I = \ln \left| {1 + \frac{{2025}}{x}} \right| + C\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \[\log {x^2} + C\].                                          

B. \(\frac{{\log _2^2x}}{2} + C\).

C. \(\log _2^2x + C\).             
D. \(\frac{{{{\log }_2}{x^2}}}{2} + C\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP