Một tòa nhà có kiến cấu như hình bên dưới. Biết rằng chiều cao tòa nhà là \(48\) \(\left( {\rm{m}} \right)\). Cắt ngôi nhà bởi một mặt phẳng song song với mặt đất thì được thiết diện là các hình vuông. Khi cắt mô hình này bởi các mặt phẳng vuông góc với đáy của nó và đi qua đường chéo hình vuông hai đáy ta được thiết diện là một hình đối xứng \(ACPM\) (\(AM,CP\)là hai cung tròn). Gọi \(O\) là tâm thiết diện hình vuông chính giữa tòa nhà như hình vẽ, \(OP\)là tiếp tuyến của cung tròn \(CP\). Biết \(OP = 30(m)\). Các khẳng định sau đây đúng hay sai?

a)Diện tích đáy tòa nhà \({S_{ABCD}} = 1000\left( {{m^2}} \right).\)
b)Diện tích thiết diện hình vuông chính giữa (nhận O là tâm) bằng \(200\left( {{m^2}} \right).\)
c)Diện tích thiết diện \(ACPM\) bằng \(1200\left( {{m^2}} \right).\)
Câu hỏi trong đề: Đề kiểm tra Tích phân (có lời giải) !!
Quảng cáo
Trả lời:
a)CHỌN SAI

+)Chiều cao tòa nhà là \(48m \Rightarrow OI = 24m\)\( \Rightarrow IP = \sqrt {O{P^2} - O{I^2}} = \sqrt {{{30}^2} - {{24}^2}} = 18\)
+)\(PQ = 18\sqrt 2 = AB \Rightarrow {S_{ABCD}} = 648{m^2}\)
b)CHỌN ĐÚNG
Gọi L là tâm cung tròn như hình vẽ.

+)Ta tính được
\(LP = 40 \Rightarrow LO = 50 \Rightarrow {\rm{OF}} = 10 \Rightarrow {S_{td}} = 200\left( {{m^2}} \right)\)
c)CHỌN ĐÚNG.

Ta có \({S_{LCP}} = 768\) và \(\cos \widehat {CLP} = \frac{{{{40}^2} + {{40}^2} - {{48}^2}}}{{2.40.40}} = \frac{7}{{25}} \Rightarrow \widehat {CLP} \approx 1,29(rad)\).
+)Diện tích quạt tròn \(LCFP\) là \({S_{LCFP}} = \frac{{1,{{29.40}^2}}}{2} = 1032\left( {{m^2}} \right)\)
+) Diện tích tam giác cong \(CFP\)là \({S_{CFP}} = 1032 - 768 = 264\left( {{m^2}} \right)\)\( \Rightarrow {S_{ACPM}} = 2\left( {{S_{GCPI}} - {S_{CFP}}} \right) = 2\left( {48.18 - 264} \right) = 1200\left( {{m^2}} \right)\)
d)CHỌN ĐÚNG.
Chọn hệ trục như hình vẽ.

+)Phương trình đường tròn \[\left( {L;40} \right)\] là \[{\left( {x - 50} \right)^2} + {y^2} = 1600 \Rightarrow x = 50 - \sqrt {1600 - {y^2}} \].
+)Độ dài đường chéo thiết diện phẳng cắt bởi mặt phẳng vuông góc với Oy là
\[2\left( {50 - \sqrt {1600 - {y^2}} } \right)\]
Suy ra \[ \Rightarrow S\left( y \right) = {\left( {2\left( {50 - \sqrt {1600 - {y^2}} } \right)} \right)^2}\]
+)Vậy thể tích ngôi nhà là \[V = 2\int\limits_0^{24} {S\left( y \right){\rm{d}}y} = 2\int\limits_0^{24} {{{\left( {2\left( {50 - \sqrt {1600 - {y^2}} } \right)} \right)}^2}} .{\rm{d}}y = 31295\,\,\left( {{m^3}} \right)\].Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đặt tọa độ như hình vẽ, ta có parabol cần tìm đi qua \(3\) điểm có toạn độ lần lượt là \(A\left( {0;6} \right),B\left( {1;3} \right),C\left( {3;0} \right)\) nên có phương trình là \(y = \frac{1}{2}{x^2} - \frac{7}{2}x + 6\)
Theo hình vẽ ta có bán kính của bát giác là \(BM\).
Suy ra: \(2y = {x^2} - 7x + 12 \Rightarrow {\left( {x - \frac{7}{2}} \right)^2} = 2y + \frac{1}{4} \Rightarrow |x - \frac{7}{2}| = \sqrt {2y + \frac{1}{4}} \)
Mà \(x \in \left[ {0;3} \right] \Rightarrow \frac{7}{2} - x = \sqrt {2y + \frac{1}{4}} \)
Nếu ta đặt \(t = OM\)thì \(BM = \frac{7}{2} - \sqrt {2t + \frac{1}{4}} \)
Khi đó diện tích của thiết diện thiết diện lục giác:
\[S(t) = 6.\frac{{B{M^2}.\sqrt 3 }}{4} = \frac{{3\sqrt 3 }}{2}.{(\frac{7}{2} - \sqrt {2t + \frac{1}{4}} )^2}\] với \(t \in [0;6]\)
Vậy thể tích của mái chòi theo đề bài là:
\[V = \int\limits_0^6 {S(t)dt} = \int\limits_0^6 {\frac{{3\sqrt 3 }}{2}.{{(\frac{7}{2} - \sqrt {2t + \frac{1}{4}} )}^2}dt} = 29,2{m^3}\]Lời giải
Trong khoảng 1 giờ đầu, ta gọi phương trình vận tốc của vật là \(v(t) = a{t^2} + bt + c(a \ne 0)\)
Theo bài ra ta có hệ phương trình:
\(\left\{ \begin{array}{l}v(0) = 4\\v(2) = 10\\{x_I} = - \frac{b}{{2a}} = 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}c = 4\\4a + 2b + c = 10\\4a + b = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = - \frac{3}{2}\\b = 6\\c = 4\end{array} \right.\)
Khi đó:\(v(t) = - \frac{3}{2}{x^2} + 6x + 4\).
=>\(v(1) = \frac{{17}}{2};v(4) = 4\).
Trong 3 giờ sau, gọi phương trình vận tốc \(v(t) = mx + n\).
Theo giả thiết ta có hệ phương trình:
\(\left\{ \begin{array}{l}v(1) = m + n = \frac{{17}}{2}\\v(4) = 4m + n = 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m = - \frac{3}{2}\\n = 10\end{array} \right.\)
\( \Rightarrow v(t) = - \frac{3}{2}x + 10\).
Quãng đường vật đi trong 4 giờ:
\(S = \int\limits_0^1 {( - \frac{3}{2}{t^2} + 6x + 4)dt + \int\limits_1^4 {( - \frac{3}{2}t + 10)dt = 25,3} } km\).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. \(\int\limits_a^b {f\left( x \right)dx} = F\left( b \right) + F\left( a \right)\).
B. \(\int\limits_a^b {f\left( x \right)dx} = F\left( b \right) - F\left( a \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

![Một vật chuyển động trong \(4\)giờ với vận tốc .\[\]. phụ thuộc vào thời gian (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2026/01/blobid39-1769864005.png)
![Đồ thị của hàm số y = f(x) trên đoạn [ -3;5 ] như hình vẽ dưới đây (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2026/01/blobid28-1769862451.png)