Diện tích phần hình phẳng gạch chéo trong hình vẽ bên được tính theo công thức nào dưới đây?
Diện tích phần hình phẳng gạch chéo trong hình vẽ bên được tính theo công thức nào dưới đây?

Câu hỏi trong đề: Đề kiểm tra Ứng dụng hình học của tích phân (có lời giải) !!
Quảng cáo
Trả lời:
Từ đồ thị ta thấy \( - {x^2} + 3 \ge {x^2} - 2x - 1\), \(\forall x \in \left[ { - 1\,;\,2} \right]\).
Vậy diện tích phần hình phẳng gạch chéo trong hình vẽ là
\(S = \int\limits_{ - 1}^2 {\left[ {\left( { - {x^2} + 3} \right) - \left( {{x^2} - 2x - 1} \right)} \right]{\rm{d}}x} \)\( = \int\limits_{ - 1}^2 {\left( { - 2{x^2} + 2x + 4} \right){\rm{d}}x} \).Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi \(S\) là diện tích hình phẳng \(\left( H \right)\). Lúc dó \(S = 2{S_1} + 2{S_2}\), trong đó \({S_1}\) là diện tích phần gạch sọc ở bên phải \(Oy\) và \({S_2}\) là diện tích phần gạch ca rô trong hình vẽ bên.
Gọi\(A,\)\(B\) là các giao diếm có hoành độ dương của đường thẳng \(y = k\) và đồ thị hàm số\(y = \left| {{x^2} - 1} \right|\), trong đó \(A\left( {\sqrt {1 - k} ;k} \right)\) và \(B\left( {\sqrt {1 + k} ;k} \right)\).
Thco yêu cầu bài toán \(S = 2 \cdot 2{S_1} \Leftrightarrow {S_1} = {S_2}\).
\( \Leftrightarrow \int\limits_0^{\sqrt {1 - k} } {\left( {1 - {x^2} - k} \right){\rm{d}}x} {\rm{\;}} = \int\limits_{\sqrt {1 - k} }^1 {\left( {k - 1 - {x^2}} \right){\rm{d}}x} + \int\limits_1^{\sqrt {1 + k} } {\left( {k - {x^2} + 1} \right){\rm{d}}x} \).
\( \Leftrightarrow {\rm{\;}}\left( {1 - k} \right)\sqrt {1 - k} - \frac{1}{3}\left( {1 - k} \right)\sqrt {1 - k} = \frac{1}{3} - \left( {1 - k} \right) - \frac{1}{3}\left( {1 - k} \right)\sqrt {1 - k} \).
\( + \left( {1 - k} \right)\sqrt {1 - k} + \left( {1 + k} \right)\sqrt {1 + k} - \frac{1}{3}\left( {1 + k} \right)\sqrt {1 + k} - \left( {1 + k} \right) + \frac{1}{3}\).
\(\begin{array}{l} \Leftrightarrow {\rm{\;}}\frac{2}{3}\left( {1 + k} \right)\sqrt {1 + k} = \frac{4}{3}\\ \Leftrightarrow {\left( {\sqrt {1 + k} } \right)^3} = 2\\ \Leftrightarrow k = \sqrt[3]{4} - 1 = \sqrt[m]{n} - p\end{array}\).
Vậy \[m = 3;n = 4;p = 1 \Rightarrow m + n + p = 8\]Lời giải
Ta có \({x^2} + 2x - 3 = kx + 1 \Leftrightarrow {x^2} - \left( {k - 2} \right)x - 4 = 0\)
Do \(ac = - 4 < 0\) PT trên luôn có hai nghiệm phân biệt \({x_1},{x_2}\) thỏa mãn \(\left\{ {\begin{array}{*{20}{c}}{{x_1} + {x_2} = k - 2}\\{{x_1}.{x_2} = - 4}\end{array}} \right.\)
Giả sử \({x_1} < {x_2} \Rightarrow S = \left| {\int\limits_{{x_1}}^{{x_2}} {\left( {{x^2} - \left( {k - 2} \right)x - 4} \right)dx} } \right| = \left| {\left( {\frac{{{x^3}}}{3} - \frac{{k - 2}}{2}{x^2} - 4x} \right)\left| {\begin{array}{*{20}{c}}{{x_2}}\\{{x_1}}\end{array}} \right.} \right|\)
\( = \left| {\frac{1}{3}\left( {x_2^3 - x_1^3} \right) - \frac{{k - 2}}{2}\left( {x_2^2 - x_1^2} \right) - 4\left( {{x_2} - {x_1}} \right)} \right| = \left| {\left( {{x_2} - {x_1}} \right)\left| {\frac{1}{3}\left[ {x_1^2 + x_2^2 + {x_1}.{x_2}} \right]} \right| - \frac{{k - 2}}{2}\left( {{x_1} + {x_2}} \right) - 4} \right|\)
\( = \sqrt {{{\left( {{x_2} + {x_1}} \right)}^2} - 4{x_1}.{x_2}} \left| {\frac{1}{3}\left[ {{{\left( {{x_2} + {x_1}} \right)}^2} - {x_1}.{x_2}} \right] - \frac{{k - 2}}{2}\left( {{x_1} + {x_2}} \right) - 4} \right| = \sqrt {{{\left( {k - 2} \right)}^2} + 16} \left| {\frac{{{{\left( {k - 2} \right)}^2}}}{6} + \frac{8}{3}} \right|\)
Vậy S nhỏ nhất khi \(k = 2\).Câu 3
a) Công thức tính diện tích hình phẳng \(\left( H \right)\) là \(\int_0^4 {\sqrt x dx} \).
b) Diện tích hình phẳng \(\left( H \right)\) là \(\frac{{19}}{6}\).
c) Thể tích khối tròn xoay giới hạn bởi đồ thị hàm số \(y = \sqrt x \), \(x = 0,\,x = 4\) và trục hoành \(Ox\) là \(8\pi \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. \(V = \pi \int\limits_{ - 2}^3 {\left( { - {x^2} + 1} \right){\rm{d}}x} \).
B. \(V = \int\limits_{ - 2}^3 {{{\left( { - {x^2} + 1} \right)}^2}{\rm{d}}x} \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
a) Diện tích hình phẳng được giới hạn bởi đồ thị hàm số \(y = \sqrt x \), trục hoành và hai đường thẳng \(x = 0,x = 4\) là \(S = \pi \int\limits_0^4 {xdx.} \)
b) Gọi \[V\] là thể tích của khối tròn xoay giới hạn bởi đồ thị hàm số \(y = 2{e^x}\), trục hoành và hai đường thẳng\(x = 0,x = 4\) khi quay quanh trục \(Ox.\) Khi đó, \(V = 2\pi \left( {{e^8} - 1} \right)\)
c) Diện tích của hình H là \({S_H} = 2{e^4} - \frac{{16}}{3}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
