Câu hỏi:

01/02/2026 6 Lưu

Diện tích phần hình phẳng gạch chéo trong hình vẽ bên được tính theo công thức nào dưới đây?

Diện tích phần hình phẳng gạch chéo trong hình vẽ bên được tính theo công thức nào dưới đây? (ảnh 1)

A. \(\int\limits_{ - 1}^2 {\left( {2{x^2} - 2x - 4} \right){\rm{d}}x} \).    
B. \(\int\limits_{ - 1}^2 {\left( {2{x^2} + 2x - 4} \right){\rm{d}}x} \).           
C. \(\int\limits_{ - 1}^2 {\left( { - 2{x^2} + 2x + 4} \right){\rm{d}}x} \). 
D. \(\int\limits_{ - 1}^2 {\left( { - 2{x^2} - 2x + 4} \right){\rm{d}}x} \).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Từ đồ thị ta thấy \( - {x^2} + 3 \ge {x^2} - 2x - 1\), \(\forall x \in \left[ { - 1\,;\,2} \right]\).

Vậy diện tích phần hình phẳng gạch chéo trong hình vẽ là

\(S = \int\limits_{ - 1}^2 {\left[ {\left( { - {x^2} + 3} \right) - \left( {{x^2} - 2x - 1} \right)} \right]{\rm{d}}x} \)\( = \int\limits_{ - 1}^2 {\left( { - 2{x^2} + 2x + 4} \right){\rm{d}}x} \).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình phẳng (H) giới hạn bởi các đường y = x^2 -1 (ảnh 2)

Gọi \(S\) là diện tích hình phẳng \(\left( H \right)\). Lúc dó \(S = 2{S_1} + 2{S_2}\), trong đó \({S_1}\) là diện tích phần gạch sọc ở bên phải \(Oy\) và \({S_2}\) là diện tích phần gạch ca rô trong hình vẽ bên.

Gọi\(A,\)\(B\) là các giao diếm có hoành độ dương của đường thẳng \(y = k\) và đồ thị hàm số\(y = \left| {{x^2} - 1} \right|\), trong đó \(A\left( {\sqrt {1 - k} ;k} \right)\) và \(B\left( {\sqrt {1 + k} ;k} \right)\).

Thco yêu cầu bài toán \(S = 2 \cdot 2{S_1} \Leftrightarrow {S_1} = {S_2}\).

\( \Leftrightarrow \int\limits_0^{\sqrt {1 - k} } {\left( {1 - {x^2} - k} \right){\rm{d}}x} {\rm{\;}} = \int\limits_{\sqrt {1 - k} }^1 {\left( {k - 1 - {x^2}} \right){\rm{d}}x}  + \int\limits_1^{\sqrt {1 + k} } {\left( {k - {x^2} + 1} \right){\rm{d}}x} \).

\( \Leftrightarrow {\rm{\;}}\left( {1 - k} \right)\sqrt {1 - k}  - \frac{1}{3}\left( {1 - k} \right)\sqrt {1 - k}  = \frac{1}{3} - \left( {1 - k} \right) - \frac{1}{3}\left( {1 - k} \right)\sqrt {1 - k} \).

\( + \left( {1 - k} \right)\sqrt {1 - k}  + \left( {1 + k} \right)\sqrt {1 + k}  - \frac{1}{3}\left( {1 + k} \right)\sqrt {1 + k}  - \left( {1 + k} \right) + \frac{1}{3}\).

\(\begin{array}{l} \Leftrightarrow {\rm{\;}}\frac{2}{3}\left( {1 + k} \right)\sqrt {1 + k}  = \frac{4}{3}\\ \Leftrightarrow {\left( {\sqrt {1 + k} } \right)^3} = 2\\ \Leftrightarrow k = \sqrt[3]{4} - 1 = \sqrt[m]{n} - p\end{array}\).

Vậy \[m = 3;n = 4;p = 1 \Rightarrow m + n + p = 8\]

Lời giải

Ta có \({x^2} + 2x - 3 = kx + 1 \Leftrightarrow {x^2} - \left( {k - 2} \right)x - 4 = 0\)

Do \(ac =  - 4 < 0\) PT trên luôn có hai nghiệm phân biệt \({x_1},{x_2}\) thỏa mãn \(\left\{ {\begin{array}{*{20}{c}}{{x_1} + {x_2} = k - 2}\\{{x_1}.{x_2} =  - 4}\end{array}} \right.\)

Giả sử \({x_1} < {x_2} \Rightarrow S = \left| {\int\limits_{{x_1}}^{{x_2}} {\left( {{x^2} - \left( {k - 2} \right)x - 4} \right)dx} } \right| = \left| {\left( {\frac{{{x^3}}}{3} - \frac{{k - 2}}{2}{x^2} - 4x} \right)\left| {\begin{array}{*{20}{c}}{{x_2}}\\{{x_1}}\end{array}} \right.} \right|\)

\( = \left| {\frac{1}{3}\left( {x_2^3 - x_1^3} \right) - \frac{{k - 2}}{2}\left( {x_2^2 - x_1^2} \right) - 4\left( {{x_2} - {x_1}} \right)} \right| = \left| {\left( {{x_2} - {x_1}} \right)\left| {\frac{1}{3}\left[ {x_1^2 + x_2^2 + {x_1}.{x_2}} \right]} \right| - \frac{{k - 2}}{2}\left( {{x_1} + {x_2}} \right) - 4} \right|\)

\( = \sqrt {{{\left( {{x_2} + {x_1}} \right)}^2} - 4{x_1}.{x_2}} \left| {\frac{1}{3}\left[ {{{\left( {{x_2} + {x_1}} \right)}^2} - {x_1}.{x_2}} \right] - \frac{{k - 2}}{2}\left( {{x_1} + {x_2}} \right) - 4} \right| = \sqrt {{{\left( {k - 2} \right)}^2} + 16} \left| {\frac{{{{\left( {k - 2} \right)}^2}}}{6} + \frac{8}{3}} \right|\)

Vậy S nhỏ nhất khi \(k = 2\).

Câu 3

a) Công thức tính diện tích hình phẳng \(\left( H \right)\) là \(\int_0^4 {\sqrt x dx} \).

Đúng
Sai

b) Diện tích hình phẳng \(\left( H \right)\) là \(\frac{{19}}{6}\).

Đúng
Sai

c) Thể tích khối tròn xoay giới hạn bởi đồ thị hàm số \(y = \sqrt x \), \(x = 0,\,x = 4\) và trục hoành \(Ox\) là \(8\pi \).

Đúng
Sai
d) Gọi  là thể tích khối tròn xoay tạo thành khi quanh hình phẳng giới hạn bởi các đường \(y = \sqrt x \), \(x = 0,\,x = 4\) và trục \(Ox\). Đường thẳng \(x = a\left( {0 < a < 4} \right)\) cắt đồ thị hàm số \(y = \sqrt x \)tại \(M\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\frac{{{e^2} - 1}}{2}\). 
B. \(\frac{{{e^2} + 1}}{2}\). 
C. \(\frac{{{e^2} + 1}}{4}\).        
D. \(\frac{{{e^2} - 1}}{4}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(V = \pi \int\limits_{ - 2}^3 {\left( { - {x^2} + 1} \right){\rm{d}}x} \).         

B. \(V = \int\limits_{ - 2}^3 {{{\left( { - {x^2} + 1} \right)}^2}{\rm{d}}x} \).

C. \(V = \int\limits_{ - 2}^3 {\left| {\left( { - {x^2} + 1} \right)} \right|{\rm{d}}x} \).                        
D. \(V = \pi \int\limits_{ - 2}^3 {{{\left( { - {x^2} + 1} \right)}^2}{\rm{d}}x} \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

a) Diện tích hình phẳng được giới hạn bởi đồ thị hàm số \(y = \sqrt x \), trục hoành và hai đường thẳng \(x = 0,x = 4\) là \(S = \pi \int\limits_0^4 {xdx.} \)

Đúng
Sai

b) Gọi \[V\] là thể tích của khối tròn xoay giới hạn bởi đồ thị hàm số \(y = 2{e^x}\), trục hoành và hai đường thẳng\(x = 0,x = 4\) khi quay quanh trục \(Ox.\) Khi đó, \(V = 2\pi \left( {{e^8} - 1} \right)\)

Đúng
Sai

c) Diện tích của hình H là \({S_H} = 2{e^4} - \frac{{16}}{3}\).

Đúng
Sai
d) Thể tích khối tròn xoay giới hạn bởi hình H khi quay quanh trục Ox là \(2\pi \left( {{e^8} - 5} \right)\)
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP