Cho hình phẳng \[\left( H \right)\] giới hạn bởi các đường \[y = \left| {{x^2} - 1} \right|\] và \[y = k\], với \[0 < k < 1\]. Tìm \[k\] để diện tích hình phẳng \[\left( H \right)\] gấp hai lần diện tích hình phẳng được kẻ sọc ở hình vẽ bên. Khi đó \[k = \sqrt[m]{n} - p\] thì giá trị của \[m + n + p\] bằng bao nhiêu?

Câu hỏi trong đề: Đề kiểm tra Ứng dụng hình học của tích phân (có lời giải) !!
Quảng cáo
Trả lời:
Đáp án:
Gọi \(S\) là diện tích hình phẳng \(\left( H \right)\). Lúc dó \(S = 2{S_1} + 2{S_2}\), trong đó \({S_1}\) là diện tích phần gạch sọc ở bên phải \(Oy\) và \({S_2}\) là diện tích phần gạch ca rô trong hình vẽ bên.
Gọi\(A,\)\(B\) là các giao diếm có hoành độ dương của đường thẳng \(y = k\) và đồ thị hàm số\(y = \left| {{x^2} - 1} \right|\), trong đó \(A\left( {\sqrt {1 - k} ;k} \right)\) và \(B\left( {\sqrt {1 + k} ;k} \right)\).
Thco yêu cầu bài toán \(S = 2 \cdot 2{S_1} \Leftrightarrow {S_1} = {S_2}\).
\( \Leftrightarrow \int\limits_0^{\sqrt {1 - k} } {\left( {1 - {x^2} - k} \right){\rm{d}}x} {\rm{\;}} = \int\limits_{\sqrt {1 - k} }^1 {\left( {k - 1 - {x^2}} \right){\rm{d}}x} + \int\limits_1^{\sqrt {1 + k} } {\left( {k - {x^2} + 1} \right){\rm{d}}x} \).
\( \Leftrightarrow {\rm{\;}}\left( {1 - k} \right)\sqrt {1 - k} - \frac{1}{3}\left( {1 - k} \right)\sqrt {1 - k} = \frac{1}{3} - \left( {1 - k} \right) - \frac{1}{3}\left( {1 - k} \right)\sqrt {1 - k} \).
\( + \left( {1 - k} \right)\sqrt {1 - k} + \left( {1 + k} \right)\sqrt {1 + k} - \frac{1}{3}\left( {1 + k} \right)\sqrt {1 + k} - \left( {1 + k} \right) + \frac{1}{3}\).
\(\begin{array}{l} \Leftrightarrow {\rm{\;}}\frac{2}{3}\left( {1 + k} \right)\sqrt {1 + k} = \frac{4}{3}\\ \Leftrightarrow {\left( {\sqrt {1 + k} } \right)^3} = 2\\ \Leftrightarrow k = \sqrt[3]{4} - 1 = \sqrt[m]{n} - p\end{array}\).
Vậy \[m = 3;n = 4;p = 1 \Rightarrow m + n + p = 8\]Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có \({x^2} + 2x - 3 = kx + 1 \Leftrightarrow {x^2} - \left( {k - 2} \right)x - 4 = 0\)
Do \(ac = - 4 < 0\) PT trên luôn có hai nghiệm phân biệt \({x_1},{x_2}\) thỏa mãn \(\left\{ {\begin{array}{*{20}{c}}{{x_1} + {x_2} = k - 2}\\{{x_1}.{x_2} = - 4}\end{array}} \right.\)
Giả sử \({x_1} < {x_2} \Rightarrow S = \left| {\int\limits_{{x_1}}^{{x_2}} {\left( {{x^2} - \left( {k - 2} \right)x - 4} \right)dx} } \right| = \left| {\left( {\frac{{{x^3}}}{3} - \frac{{k - 2}}{2}{x^2} - 4x} \right)\left| {\begin{array}{*{20}{c}}{{x_2}}\\{{x_1}}\end{array}} \right.} \right|\)
\( = \left| {\frac{1}{3}\left( {x_2^3 - x_1^3} \right) - \frac{{k - 2}}{2}\left( {x_2^2 - x_1^2} \right) - 4\left( {{x_2} - {x_1}} \right)} \right| = \left| {\left( {{x_2} - {x_1}} \right)\left| {\frac{1}{3}\left[ {x_1^2 + x_2^2 + {x_1}.{x_2}} \right]} \right| - \frac{{k - 2}}{2}\left( {{x_1} + {x_2}} \right) - 4} \right|\)
\( = \sqrt {{{\left( {{x_2} + {x_1}} \right)}^2} - 4{x_1}.{x_2}} \left| {\frac{1}{3}\left[ {{{\left( {{x_2} + {x_1}} \right)}^2} - {x_1}.{x_2}} \right] - \frac{{k - 2}}{2}\left( {{x_1} + {x_2}} \right) - 4} \right| = \sqrt {{{\left( {k - 2} \right)}^2} + 16} \left| {\frac{{{{\left( {k - 2} \right)}^2}}}{6} + \frac{8}{3}} \right|\)
Vậy S nhỏ nhất khi \(k = 2\).Lời giải

Khi \(x \le 1\) ta xét phương trình hoành độ giao điểm \(\frac{{10}}{3}x - {x^2} = - x\) giải ra nghiệm \(x = 0\)
Khi \(x > 1\) ta xét phương trình hoành độ giao điểm \(\frac{{10}}{3}x - {x^2} = x - 2\) giải ra nghiệm \(x = 3\)
Vậy diện tích hình phẳng là
\(S = \int\limits_0^1 {\left( {\frac{{10}}{3}x - {x^2} + x} \right)dx + } \int\limits_1^3 {\left( {\frac{{10}}{3}x - {x^2} - x + 2} \right)dx = \frac{{13}}{2}.} \)Câu 3
a) Công thức tính diện tích hình phẳng \(\left( H \right)\) là \(\int_0^4 {\sqrt x dx} \).
b) Diện tích hình phẳng \(\left( H \right)\) là \(\frac{{19}}{6}\).
c) Thể tích khối tròn xoay giới hạn bởi đồ thị hàm số \(y = \sqrt x \), \(x = 0,\,x = 4\) và trục hoành \(Ox\) là \(8\pi \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. \(V = \pi \int\limits_{ - 2}^3 {\left( { - {x^2} + 1} \right){\rm{d}}x} \).
B. \(V = \int\limits_{ - 2}^3 {{{\left( { - {x^2} + 1} \right)}^2}{\rm{d}}x} \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.