Cho hàm số \(f(x)\) có \(f(0) = 4\) và\(f'(x) = 2{\cos ^2}x + 1,\forall x \in \mathbb{R}\) Khi đó \(\int\limits_0^{\frac{\pi }{4}} {f(x)dx} \) bằng.
Câu hỏi trong đề: Đề kiểm tra Ôn tập chương 4 (có lời giải) !!
Quảng cáo
Trả lời:
Chọn D
Ta có: \[\int\limits_0^1 {\left( {3x + 1} \right)\left( {x + 3} \right){\rm{d}}x} = \int\limits_0^1 {\left( {3{x^2} + 10x + 3} \right){\rm{d}}x} = \left. {\left( {{x^3} + 5{x^2} + 3x} \right)} \right|_0^1 = 9\].
\[\begin{array}{l}f(x) = \int {(2{{\cos }^2}} x + 1){\rm{d}}x = \int {\left( {2\left( {\frac{{1 + \cos 2x}}{2}} \right) + 1} \right)} {\rm{d}}x = \int {\left( {\cos 2x + 2} \right)} {\rm{d}}x\\ = \int {\cos 2x{\rm{d}}x + \int {2{\rm{d}}x} } = \frac{{\sin 2x}}{2} + 2x + C.\end{array}\]
Lại có \(f(0) = 4 \Leftrightarrow C = 4 \Rightarrow f(x) = \frac{{\sin 2x}}{2} + 2x + 4.\)
\(\begin{array}{l} \Rightarrow \int\limits_0^{\frac{\pi }{4}} {f(x){\rm{d}}x = } \int\limits_0^{\frac{\pi }{4}} {\left( {\frac{{\sin 2x}}{2} + 2x + 4} \right){\rm{d}}x = } \frac{1}{4}\int\limits_0^{\frac{\pi }{4}} {\sin 2x{\rm{d}}(2x) + \int\limits_0^{\frac{\pi }{4}} {2x{\rm{d}}x + \int\limits_0^{\frac{\pi }{4}} {4{\rm{d}}x} } } \\ = \frac{{ - \cos 2x}}{4}\left| \begin{array}{l}\frac{\pi }{4}\\0\end{array} \right. + ({x^2} + 4x)\left| \begin{array}{l}\frac{\pi }{4}\\0\end{array} \right. = \frac{{{\pi ^2} + 16\pi + 4}}{{16}}.\end{array}\).Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
a) \(m = - 4\).
b) \(F\left( x \right) = \left\{ \begin{array}{l}{x^3} - {x^2} - 4x + 7\,\,\,\,\,{\rm{khi}}\,\,x \ge 1\\x - 2x{}^2\,\, + 4\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{\rm{khi}}\,\,x < 1\end{array} \right.\).
c) \[\int\limits_{ - 1}^5 {f\left( x \right)dx} = 108\].
Lời giải
a) ĐÚNG
Ta có \(f\left( x \right)\) liên tục trên \(\mathbb{R}\) nên \(f\left( x \right)\) liên tục tại \(x = 1\).
Do đó \(\mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = f\left( 1 \right)\)\( \Leftrightarrow m + 1 = - 3 \Leftrightarrow m = - 4\).
b) ĐÚNG
Ta có \(F\left( x \right) = \left\{ \begin{array}{l}{x^3} - {x^2} + mx + {C_1}\,\,\,\,\,{\rm{khi}}\,\,x \ge 1\\x - 2x{}^2\,\, + {C_2}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{\rm{khi}}\,\,x < 1\end{array} \right.\)
\(F\left( { - 2} \right) = \left( { - 2} \right) - 2.{\left( { - 2} \right)^2} + {C_2} = {C_2} - 10 \Rightarrow {C_2} = 10 - 6 = 4\).
\(\mathop {\lim }\limits_{x \to {1^ + }} F\left( x \right) = \mathop {\lim }\limits_{x \to {1^ + }} \left( {{x^3} - {x^2} + mx + {C_1}} \right) = m + {C_1}\).
\(\mathop {\lim }\limits_{x \to {1^ - }} F\left( x \right) = \mathop {\lim }\limits_{x \to {1^ - }} \left( {x - 2{x^2} + {C_2}} \right) = - 1 + {C_2} = 3\).
Ta lại có \(F\left( x \right)\) liên tục tại \(x = 1\).
Do đó \(\mathop {\lim }\limits_{x \to {1^ - }} F\left( x \right) = \mathop {\lim }\limits_{x \to {1^ + }} F\left( x \right) = F\left( 1 \right)\)\[ \Leftrightarrow m + {C_1} = 3 \Leftrightarrow {C_1} = 3 - m = 7\].
Vậy \(F\left( x \right) = \left\{ \begin{array}{l}{x^3} - {x^2} - 4x + 7\,\,\,\,\,{\rm{khi}}\,\,x \ge 1\\x - 2x{}^2\,\, + 4\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{\rm{khi}}\,\,x < 1\end{array} \right.\).
c) SAI
Ta có \[\int\limits_{ - 1}^5 {f\left( x \right)dx} = \int\limits_{ - 1}^1 {f\left( x \right)dx} + \int\limits_1^5 {f\left( x \right)dx} = \int\limits_{ - 1}^1 {\left( {1 - 4x} \right)dx} + \int\limits_1^5 {\left( {3{x^2} - 2x - 4} \right)dx} = 86\]
d) SAI
Đặt \(t = \ln x \Rightarrow dt = \frac{1}{x}dx\).
Khi \(x = 1 \Rightarrow t = 0\);
Khi \(x = {e^2} \Rightarrow t = 2\).
Do đó
\[\int\limits_1^{{e^2}} {f\left( {\ln x} \right)\frac{1}{x}dx} = \int\limits_0^2 {f\left( t \right)dt} = \int\limits_0^1 {f\left( x \right)dx} + \int\limits_1^2 {f\left( x \right)dx} = \int\limits_0^1 {\left( {1 - 4x} \right)dx} + \int\limits_1^2 {\left( {3{x^2} - 2x - 4} \right)dx} = - 1\].Lời giải
Khi lò xo được kéo giãn từ độ dài từ \(10cm\) đến\(15cm\), thì lượng kéo giãn là \(x = 15 - 10 = 5cm \Rightarrow x = 0,05m\). Điều này có nghĩa là \(f\left( {0,05} \right) = 50 \Rightarrow 0,05.k = 50 \Rightarrow k = 50:0,05 = 1000\left( {N/m} \right)\).
Do đó, ta có:
\(f\left( x \right) = 1000.x\left( N \right)\) và công cần thực hiện để kéo giãn lò xo từ \(15cm\) đến \(20cm\) là
\(A = \int\limits_{0,15}^{0,2} {1000xdx = 1000 \cdot \frac{{{x^2}}}{2}} \left| \begin{array}{l}0,2\\0,15\end{array} \right. = 1000 \cdot \left( {\frac{{{{0.2}^2}}}{2} - \frac{{0,{{15}^2}}}{2}} \right) = 8,75\left( J \right)\).Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.


