Câu hỏi:

01/02/2026 8 Lưu

Một thùng đựng Bia hơi (có dạng như hình vẽ) có đường kính đáy là 30cm, đường kính lớn nhất của thân thùng là 40cm, chiều cao thùng là 60 cm, cạnh bên hông của thùng có hình dạng của một parabol. Tính thể tích của thùng Bia hơi. ( làm tròn đến hàng phần chục).

Một thùng đựng Bia hơi (có dạng như hình vẽ) có đường kính đáy là 30cm (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án:

63,8

Gọi \[\left( P \right):y = a{x^2} + bx + c\] là parabol đi qua điểm \[A\left( {3;\frac{3}{2}} \right)\] và có đỉnh \[I\left( {0;2} \right)\](hình vẽ bên dưới).

Một thùng đựng Bia hơi (có dạng như hình vẽ) có đường kính đáy là 30cm (ảnh 2)

Khi đó thể tích thùng Bia bằng thể tích khối tròn xoay khi cho hình phẳng giới hạn bởi \[\left( P \right)\], trục hoành và hai đường thẳng \[x = 3;\,x =  - 3\] quay quanh trục \[Ox\].

Ta thấy \[\left( P \right)\]có đỉnh \[I\left( {0;2} \right)\] nên \[\left( P \right):y = a{x^2} + 2\], mặt khác \[\left( P \right)\] đi qua điểm \[A\left( {3;\frac{3}{2}} \right)\] nên ta tìm được \[\left( P \right)\]có phương trình \[y = \frac{{ - {x^2}}}{{18}} + 2\].

Khi đó thể tích thùng Bia là:

\[V = \pi \int\limits_{ - 3}^3 {{{\left( {\frac{{ - {x^2}}}{{18}} + 2} \right)}^2}{\rm{d}}x}  = \frac{{203}}{{10}}\pi \left( {d{m^3}} \right) \approx 63,8\](lít).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

a) \(m =  - 4\).

Đúng
Sai

b) \(F\left( x \right) = \left\{ \begin{array}{l}{x^3} - {x^2} - 4x + 7\,\,\,\,\,{\rm{khi}}\,\,x \ge 1\\x - 2x{}^2\,\, + 4\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{\rm{khi}}\,\,x < 1\end{array} \right.\).

Đúng
Sai

c) \[\int\limits_{ - 1}^5 {f\left( x \right)dx}  = 108\].

Đúng
Sai
d) \[\int\limits_1^{{e^2}} {f\left( {\ln x} \right)\frac{1}{x}dx}  = 3\].
Đúng
Sai

Lời giải

a) ĐÚNG

Ta có \(f\left( x \right)\) liên tục trên \(\mathbb{R}\) nên \(f\left( x \right)\) liên tục tại \(x = 1\).

Do đó \(\mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = f\left( 1 \right)\)\( \Leftrightarrow m + 1 =  - 3 \Leftrightarrow m =  - 4\).

b) ĐÚNG

Ta có \(F\left( x \right) = \left\{ \begin{array}{l}{x^3} - {x^2} + mx + {C_1}\,\,\,\,\,{\rm{khi}}\,\,x \ge 1\\x - 2x{}^2\,\, + {C_2}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{\rm{khi}}\,\,x < 1\end{array} \right.\)

\(F\left( { - 2} \right) = \left( { - 2} \right) - 2.{\left( { - 2} \right)^2} + {C_2} = {C_2} - 10 \Rightarrow {C_2} = 10 - 6 = 4\).

\(\mathop {\lim }\limits_{x \to {1^ + }} F\left( x \right) = \mathop {\lim }\limits_{x \to {1^ + }} \left( {{x^3} - {x^2} + mx + {C_1}} \right) = m + {C_1}\).

\(\mathop {\lim }\limits_{x \to {1^ - }} F\left( x \right) = \mathop {\lim }\limits_{x \to {1^ - }} \left( {x - 2{x^2} + {C_2}} \right) =  - 1 + {C_2} = 3\).

Ta lại có \(F\left( x \right)\) liên tục tại \(x = 1\).

Do đó \(\mathop {\lim }\limits_{x \to {1^ - }} F\left( x \right) = \mathop {\lim }\limits_{x \to {1^ + }} F\left( x \right) = F\left( 1 \right)\)\[ \Leftrightarrow m + {C_1} = 3 \Leftrightarrow {C_1} = 3 - m = 7\].

Vậy \(F\left( x \right) = \left\{ \begin{array}{l}{x^3} - {x^2} - 4x + 7\,\,\,\,\,{\rm{khi}}\,\,x \ge 1\\x - 2x{}^2\,\, + 4\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{\rm{khi}}\,\,x < 1\end{array} \right.\).

c) SAI

Ta có \[\int\limits_{ - 1}^5 {f\left( x \right)dx}  = \int\limits_{ - 1}^1 {f\left( x \right)dx}  + \int\limits_1^5 {f\left( x \right)dx}  = \int\limits_{ - 1}^1 {\left( {1 - 4x} \right)dx}  + \int\limits_1^5 {\left( {3{x^2} - 2x - 4} \right)dx}  = 86\]

d) SAI

Đặt \(t = \ln x \Rightarrow dt = \frac{1}{x}dx\).

Khi \(x = 1 \Rightarrow t = 0\);

Khi \(x = {e^2} \Rightarrow t = 2\).

Do đó

\[\int\limits_1^{{e^2}} {f\left( {\ln x} \right)\frac{1}{x}dx}  = \int\limits_0^2 {f\left( t \right)dt}  = \int\limits_0^1 {f\left( x \right)dx}  + \int\limits_1^2 {f\left( x \right)dx}  = \int\limits_0^1 {\left( {1 - 4x} \right)dx}  + \int\limits_1^2 {\left( {3{x^2} - 2x - 4} \right)dx}  =  - 1\].

Lời giải

Khi lò xo được kéo giãn từ độ dài từ \(10cm\) đến\(15cm\), thì lượng kéo giãn là \(x = 15 - 10 = 5cm \Rightarrow x = 0,05m\). Điều này có nghĩa là \(f\left( {0,05} \right) = 50 \Rightarrow 0,05.k = 50 \Rightarrow k = 50:0,05 = 1000\left( {N/m} \right)\).

Do đó, ta có:

\(f\left( x \right) = 1000.x\left( N \right)\) và công cần thực hiện để kéo giãn lò xo từ \(15cm\) đến \(20cm\) là

\(A = \int\limits_{0,15}^{0,2} {1000xdx = 1000 \cdot \frac{{{x^2}}}{2}} \left| \begin{array}{l}0,2\\0,15\end{array} \right. = 1000 \cdot \left( {\frac{{{{0.2}^2}}}{2} - \frac{{0,{{15}^2}}}{2}} \right) = 8,75\left( J \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\int {f\left( x \right)dx = \frac{2}{3}\left( {2x - 1} \right)\sqrt {2x - 1}  + C.} \).                             

B. \(\int {f\left( x \right)dx = \frac{1}{3}\left( {2x - 1} \right)\sqrt {2x - 1}  + C.} \).

C. \(\int {f\left( x \right)dx =  - \frac{1}{3}\sqrt {2x - 1}  + C.} \).  
D. \(\int {f\left( x \right)dx = \frac{1}{2}\sqrt {2x - 1}  + C.} \)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP