Một phòng họp có \(360\) ghế ngồi được xếp thành từng dãy và số ghế của từng dãy đều như nhau. Nếu tăng số dãy thêm \(1\) và số ghế của mỗi dãy tăng thêm \(1\) thì trong phòng có \(400\) ghế. Nếu gọi số dãy ghế là \(x\) (dãy) với \(x \in {\mathbb{N}^*}.\) Biết số dãy ghế ít hơn, lập phương trình của bài toán là
Quảng cáo
Trả lời:
Chọn B
Gọi số dãy ghế là \(x\) (dãy) với \(x \in {\mathbb{N}^*}.\)
Số dãy ghế lúc sau là \(x - 1\) (dãy)
Số ghế mỗi dãy lúc đầu là \(\frac{{360}}{x}\) (ghế)
Số ghế mỗi dãy lúc sau là \(\frac{{360}}{x} + 1\) (ghế)
Phương trình của bài toán là \(\left( {x - 1} \right)\left( {\frac{{360}}{x} + 1} \right) = 400\).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Chọn B
Gọi năng suất máy bơm công nhân cho hoạt động là \(x({m^3}/h)\) \(x > 5\)thì
Năng suất theo kế hoạch \(x - 5({m^3}/h)\)
Thời gian theo kế hoạch \(\frac{{50}}{{x - 5}}\)(h) Thời gian thực tế \(\frac{{50}}{x}\) (h)
Ta có phương trình \(\frac{{50}}{x} + \frac{5}{3} = \frac{{50}}{{x - 5}}\)
Giải phương trình được \(x = - 10\) (loại), \(x = 15\) (thỏa mãn)
Câu 2
Lời giải
Chọn D
Gọi số thứ nhất là \(x\) (\(x \in {N^*}\))
⇒ Số thứ hai là \(x + 2\)
Vì tổng bình phương của hai số là \(244\) nên ta có phương trình
\({x^2} + {(x + 2)^2} = 244\)
\( \Leftrightarrow 2{x^2} + 4x - 240 = 0\) Giải phương trình
\( \Leftrightarrow {x^2} + 2x - 120 = 0\).
Ta có \(\Delta = 4 + 480 = 484 > 0\)
vì \(\Delta > 0\): Phương trình có hai nghiệm phân biệt
\({x_1} = \frac{{ - 2 + 22}}{2} = 10\), \({x_2} = \frac{{ - 2 - 22}}{2} = - 12\)
Với \(x = 10\) (thỏa mãn điều kiện) do đó số thứ nhất là \[10\] và số thứ hai là \[12\]
Với \(x = - 12\) (không thỏa mãn điều kiện) nên loại
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.