Câu hỏi:

03/02/2026 6 Lưu

Cho phương trình \({x^2} - 2x + m + 2 = 0\). Tìm m để phương trình có nghiệm \({x_1};{x_2}\) thỏa mãn điều kiện \({x_1}^2 + {x_2}^2 = 10\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có: \(a = 1;b =  - 2 \Rightarrow b' =  - 1;c = m + 2\). Phương trình đã cho có hai nghiệm \({x_1};{x_2}\) khi và chỉ khi

\(\Delta ' \ge 0 \Leftrightarrow {\left( { - 1} \right)^2} - \left( {m + 2} \right) \ge 0 \Leftrightarrow \;m \le  - 1\)

Theo hệ thức Viète, ta có: \({x_1} + {x_2} = 2;{x_1}{x_2} = m + 2\). Vậy \({x_1}^2 + {x_2}^2 = 10 \Leftrightarrow {\left( {{x_1} + {x_2}} \right)^2} - 2{x_1}{x_2} = 10\)

\( \Leftrightarrow 4 - 2\left( {m + 2} \right) = 10 \Leftrightarrow  - 2m = 10 \Leftrightarrow m =  - 5{\rm{ }}\)(thỏa mãn điều kiện \(m \ge  - 1\))

Đáp số: \(m =  - 5\).

Cách khác: Giả sử phương trình đã cho có hai nghiệm \({x_1};{x_2}\). Theo hệ thức Viète, ta có:

\({x_1} + {x_2} = 2;{x_1}{x_2} = m + 2\) (Tương tự cách giải trên):

\({x_1}^2 + {x_2}^2 = 10 \Leftrightarrow 4 - 2\left( {\;m + 2} \right) = 10 \Leftrightarrow \;m =  - 5\)

Thử lại: Với \(m =  - 5\), ta có phương trình \({x^2} - 2x - 3 = 0\). Ta có \(a = 1;b =  - 2;c =  - 3 \Rightarrow ac =  - 2 < 0 \Rightarrow \) phương trình có hai nghiệm.

Chú ý: Vì ta giả sử có nghiệm, để tìm được \(m\), sau đó ta phải thử lại. Nếu làm như cách thứ nhất, ta tìm điều kiện cho phương trình có nghiệm thì không cần thử lại.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) \(A\) thuộc đường thẳng \({\rm{y}} = 2{\rm{x}} - 1\) và hoành độ bằng 2 nên tung độ của \(A:y = 2.2 - 1 \Rightarrow y = 3\). Vậy \(A(2;3)\).

Lại có A là giao điểm của parabol \(y = (m + 1){x^2}\) và \(y = 2x - 1\) nên ta có \(3 = (m + 1) \cdot {(2)^2}\)

\( \Rightarrow 4\;{\rm{m}} + 4 = 3 \Rightarrow \;{\rm{m}} =  - \frac{1}{4}\). Vậy \({\rm{y}} = \frac{3}{4}{{\rm{x}}^2}\).

b) Vẽ parabol (P): \(y = \frac{3}{4}{x^2}\).

Bảng giá trị:

Cho hàm số \({\rm{y}} = ({\rm{m} (ảnh 1)

Parabol \(({\rm{P}})\) có đỉnh O và nhận trục tung làm trục đối xứng.

Cho hàm số \({\rm{y}} = ({\rm{m} (ảnh 2)

Lời giải

Ta có \(a = 3;b = 2;c =  - 6 \Rightarrow \;a.c =  - 18 < 0 \Rightarrow \) phương trình luôn có hai nghiệm phân biệt (khác dấu) \({x_1},{x_2}\).

Theo định lí Viète, ta có: \({x_1} + {x_2} =  - \frac{2}{3};{x_1}{x_2} =  - 2\).

Vậy \(A = {x_1}^2 - 2{x_1}{x_2} + {x_2}^2 = {\left( {{x_1} + {x_2}} \right)^2} - 4{x_1}{x_2} = {\left( { - \frac{2}{3}} \right)^2} - 4.( - 2) = \frac{{76}}{9}\)

Nhận xét: Từ kết quả trên, ta có thể tìm được: \(\left| {{x_1} - {x_2}} \right| = \frac{{\sqrt {76} }}{3} = \frac{{2\sqrt {19} }}{3} \Rightarrow {x_1} - {x_2} =  \pm \frac{{2\sqrt {19} }}{3}\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP