Câu hỏi:

03/02/2026 6 Lưu

Cho phương trình \({x^2} - 2mx + 2\;m - 3 = 0\). Tìm giá trị nhỏ nhất của biểu thức \(A = {x_1}^2 + {x_2}^2\), trong đó \({x_1},{x_2}\) là hai nghiệm của phương trình.

Hướng dẫn: Trước hết phải tìm điều kiện để phương trình có nghiệm; sau đó áp dụng hệ thực Viète để tính \({x_1}^2 + {x_2}^2\) qua các hệ số.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có \(a = 1;b =  - 2\;m \Rightarrow \;b' =  - m;c = 2\;m - 3\). Phương trình đã cho có nghiệm \({x_1},{x_2}\) khi và chỉ khi

\(\left\{ {\begin{array}{*{20}{l}}{a \ne 0}\\{\Delta ' \ge 0}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{1 \ne 0}\\{{{\left( { - m} \right)}^2} - \left( {2m - 3} \right) \ge 0}\end{array}} \right.} \right.\)

\( \Leftrightarrow {m^2} - 2m + 3 \ge 0 \Leftrightarrow {m^2} - 2m + 1 + 2 \ge 0 \Leftrightarrow {\left( {m - 1} \right)^2} + 2 \ge 0\) (luôn đúng với mọi \(m\) vì \({\left( {m - 1} \right)^2} \ge 0,\forall m\)) Vậy \(A = {\left( {{x_1} + {x_2}} \right)^2} - 2{x_1}{x_2} = 4{m^2} - 2\left( {2m - 3} \right) = 4{m^2} - 4m + 6 = \left( {4{m^2} - 4m + 1} \right) + 5n\)

\( = {(2m - 1)^2} + 5 \ge 5;\forall m\left( {{{(2m - 1)}^2} \ge 0,\forall m} \right)\)

Dấu “=” xảy ra khi và chỉ khi \(2m - 1 = 0 \Leftrightarrow m = \frac{1}{2}\)

Chú ý: Nếu ta không đặt điều kiện phương trình có nghiệm thì vẫn đúng đáp số, nhưng lời giải như vậy chưa chính xác.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) \(A\) thuộc đường thẳng \({\rm{y}} = 2{\rm{x}} - 1\) và hoành độ bằng 2 nên tung độ của \(A:y = 2.2 - 1 \Rightarrow y = 3\). Vậy \(A(2;3)\).

Lại có A là giao điểm của parabol \(y = (m + 1){x^2}\) và \(y = 2x - 1\) nên ta có \(3 = (m + 1) \cdot {(2)^2}\)

\( \Rightarrow 4\;{\rm{m}} + 4 = 3 \Rightarrow \;{\rm{m}} =  - \frac{1}{4}\). Vậy \({\rm{y}} = \frac{3}{4}{{\rm{x}}^2}\).

b) Vẽ parabol (P): \(y = \frac{3}{4}{x^2}\).

Bảng giá trị:

Cho hàm số \({\rm{y}} = ({\rm{m} (ảnh 1)

Parabol \(({\rm{P}})\) có đỉnh O và nhận trục tung làm trục đối xứng.

Cho hàm số \({\rm{y}} = ({\rm{m} (ảnh 2)

Lời giải

Ta có \(a = 3;b = 2;c =  - 6 \Rightarrow \;a.c =  - 18 < 0 \Rightarrow \) phương trình luôn có hai nghiệm phân biệt (khác dấu) \({x_1},{x_2}\).

Theo định lí Viète, ta có: \({x_1} + {x_2} =  - \frac{2}{3};{x_1}{x_2} =  - 2\).

Vậy \(A = {x_1}^2 - 2{x_1}{x_2} + {x_2}^2 = {\left( {{x_1} + {x_2}} \right)^2} - 4{x_1}{x_2} = {\left( { - \frac{2}{3}} \right)^2} - 4.( - 2) = \frac{{76}}{9}\)

Nhận xét: Từ kết quả trên, ta có thể tìm được: \(\left| {{x_1} - {x_2}} \right| = \frac{{\sqrt {76} }}{3} = \frac{{2\sqrt {19} }}{3} \Rightarrow {x_1} - {x_2} =  \pm \frac{{2\sqrt {19} }}{3}\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP