Câu hỏi:

03/02/2026 6 Lưu

Giả sử Cổng Arch tại thành phố St Louis của Mỹ có hình dạng là một parabol (hình vẽ). Biết khoảng cách giữa hai chân cổng bằng 162 m, điểm cao nhất trên cổng cách mặt đất 185,6m. Trên thành cổng, tại vị trí có độ cao 43 m so với mặt đất (điểm M), người ta thả một sợi dây chạm đất (dây căng thẳng theo phương vuông góc với mặt đất). Hỏi vị trí chạm đất của đầu sợi dây này cách chân cổng A một đoạn bao nhiêu mét? (làm tròn đến cm )

Giả sử Cổng Arch tại thành phố St Louis của Mỹ có hình dạng là một parabol (hình vẽ). Biết khoảng cách giữa hai chân cổng bằng 162 m, điểm cao nhất trên cổng cách mặt đất 185,6m. (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Cái cổng có hình dạng là một parabol có phương trình dạng: \((P):y = a{x^2}(a < 0)\).

\({\rm{OA}} = \frac{{{\rm{AB}}}}{2} = \frac{{162}}{2} = 81\;{\rm{m}}\) \( \Rightarrow {\rm{A}}(81; - 185,6) \in (P):y = a{x^2} \Rightarrow  - 185,6 = a{.81^2} \Rightarrow a = \frac{{ - 185,6}}{{{{81}^2}}} = \frac{{ - 185}}{{6561}}\)

\((P):y = \frac{{ - 185}}{{6561}}{x^2}\)

\({\rm{HM}} = {\rm{EH}} - {\rm{ME}} = 185,6 - 43 = 142,6\;{\rm{m}}\)

\( \Rightarrow {\rm{M}}\left( {{x_{\rm{M}}}; - 142,6} \right) \in (P):y = \frac{{ - 185}}{{6561}}{x^2} \Rightarrow  - 142,6 = \frac{{ - 185}}{{6561}}x_{\rm{M}}^2\)

\( \Rightarrow {x_{\rm{M}}}^2 = \frac{{ - 142,6.6561}}{{ - 185}} = \frac{{4677993}}{{925}} \Rightarrow {x_{\rm{M}}} = \sqrt {\frac{{4677993}}{{925}}}  \approx 71,11\;{\rm{m}}\)

\( \Rightarrow {\rm{OE}} = 71,11\;{\rm{m}} \Rightarrow {\rm{EA}} = {\rm{OA}} - {\rm{OE}} = 81 - 71,11 = 9,89\;{\rm{m}}.\)

Vậy vị trí chạm đất của đầu sợi dây này cách chân cổng \(A\) một khoảng là \(9,89\;{\rm{m}}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) \(A\) thuộc đường thẳng \({\rm{y}} = 2{\rm{x}} - 1\) và hoành độ bằng 2 nên tung độ của \(A:y = 2.2 - 1 \Rightarrow y = 3\). Vậy \(A(2;3)\).

Lại có A là giao điểm của parabol \(y = (m + 1){x^2}\) và \(y = 2x - 1\) nên ta có \(3 = (m + 1) \cdot {(2)^2}\)

\( \Rightarrow 4\;{\rm{m}} + 4 = 3 \Rightarrow \;{\rm{m}} =  - \frac{1}{4}\). Vậy \({\rm{y}} = \frac{3}{4}{{\rm{x}}^2}\).

b) Vẽ parabol (P): \(y = \frac{3}{4}{x^2}\).

Bảng giá trị:

Cho hàm số \({\rm{y}} = ({\rm{m} (ảnh 1)

Parabol \(({\rm{P}})\) có đỉnh O và nhận trục tung làm trục đối xứng.

Cho hàm số \({\rm{y}} = ({\rm{m} (ảnh 2)

Lời giải

Ta có \(a = 3;b = 2;c =  - 6 \Rightarrow \;a.c =  - 18 < 0 \Rightarrow \) phương trình luôn có hai nghiệm phân biệt (khác dấu) \({x_1},{x_2}\).

Theo định lí Viète, ta có: \({x_1} + {x_2} =  - \frac{2}{3};{x_1}{x_2} =  - 2\).

Vậy \(A = {x_1}^2 - 2{x_1}{x_2} + {x_2}^2 = {\left( {{x_1} + {x_2}} \right)^2} - 4{x_1}{x_2} = {\left( { - \frac{2}{3}} \right)^2} - 4.( - 2) = \frac{{76}}{9}\)

Nhận xét: Từ kết quả trên, ta có thể tìm được: \(\left| {{x_1} - {x_2}} \right| = \frac{{\sqrt {76} }}{3} = \frac{{2\sqrt {19} }}{3} \Rightarrow {x_1} - {x_2} =  \pm \frac{{2\sqrt {19} }}{3}\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP