Trong không gian với hệ tọa độ \({\rm{O}}xyz\), cho ba điểm \(A(1;4;5)\), \(B(3;4;0),C(2; - 1;0)\) và mặt phẳng \((P):3x + 3y - 2z - 29 = 0\). Gọi \(M(a;b;c)\) là điểm thuộc \((P)\) sao cho biểu thức \(T = M{A^2} + M{B^2} + 3M{C^2}\) đạt GTNN. Tính tổng \(a + b + c\).
Quảng cáo
Trả lời:
Đáp án:
Chọn điểm \(I\) thỏa mãn \(\overrightarrow {IA} + \overrightarrow {IB} + 3\overrightarrow {IC} = \overrightarrow 0 \Rightarrow I\left( {2;1;1} \right)\)
Ta có:
\(\begin{array}{l}T = M{A^2} + M{B^2} + 3M{C^2}\\\,\,\,\,\, = {\overrightarrow {MA} ^2} + {\overrightarrow {MB} ^2} + 3{\overrightarrow {MC} ^2}\\\,\,\,\,\, = {\left( {\overrightarrow {MI} + \overrightarrow {IA} } \right)^2} + {\left( {\overrightarrow {MI} + \overrightarrow {IB} } \right)^2} + 3{\left( {\overrightarrow {MI} + \overrightarrow {IC} } \right)^2}\\\,\,\,\,\, = 5M{I^2} + 2\overrightarrow {MI} .\left( {\overrightarrow {IA} + \overrightarrow {IB} + \overrightarrow {IC} } \right) + I{A^2} + I{B^2} + I{C^2}\\\,\,\,\,\, = 5M{I^2} + I{A^2} + I{B^2} + I{C^2}\end{array}\)
\({T_{\min }} \Leftrightarrow M{I_{\min }}\)
Suy ra, \(M\) là hình chiếu của \(I\) trên mặt phẳng \(\left( P \right)\)
Gọi \(\Delta \) là đường thẳng đi qua \(I\) và vuông góc với \(\left( P \right)\)
\( \Rightarrow \overrightarrow {{u_\Delta }} = \overrightarrow {{n_P}} = \left( {3;3; - 2} \right)\)
\(\Delta :\left\{ \begin{array}{l}x = 2 + 3t\\y = 1 + 3t\\z = 1 - 2t\end{array} \right.\)
\(M \in \Delta \Rightarrow M\left( {2 + 3t;1 + 3t;1 - 2t} \right)\)
\(\begin{array}{l}M \in \left( P \right) \Leftrightarrow 3\left( {2 + 3t} \right) + 3\left( {1 + 3t} \right) - 2\left( {1 - 2t} \right) - 29 = 0\\ \Leftrightarrow t = 1 \Rightarrow M\left( {5;4; - 1} \right)\end{array}\)
Vậy \(a + b + c = 5 + 4 - 1 = 8\).Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chọn hệ trục như hình vẽ. Gọi \(M\) là điểm mà quả bóng chạm đất.
Khi đó \({x_M} = 0,5\), \({y_M} = \sqrt {4,{5^2} - 0,{5^2}} = 2\sqrt 5 \)
Vì \(\left( \alpha \right) \bot \left( {Oxy} \right)\) nên \(\left( \alpha \right)\) có véc tơ chỉ phương \(\overrightarrow k = \left( {0;0;1} \right)\).
Mà \(\left( \alpha \right)\) có véc tơ chỉ phương \(\overrightarrow {OM} = \left( {0,5;2\sqrt 5 ;0} \right)\)
Khi đó véc tơ pháp tuyến của \(\left( \alpha \right)\) là \(\overrightarrow {{n_\alpha }} = \left[ {\overrightarrow k ,\overrightarrow {OM} } \right] = \left( { - 2\sqrt 5 ;0,5;0} \right)\).
Vậy \(\left( \alpha \right): - 2\sqrt 5 x + 0,5y = 0\) nên \(a = - 2\sqrt 5 ;b = 0,5;c = 0;d = 0 \Rightarrow a + b + c + d \approx - 4,5\).Câu 2
a) \[\overrightarrow {AB} = \left( {0;1;1} \right)\].
b) Tích có hướng của hai vectơ \[\overrightarrow {AB} ,\overrightarrow {AC} \] là \[\overrightarrow a = \left( { - 1;3; - 3} \right)\].
c) \(\overrightarrow {BC} ,\overrightarrow b = \left( {6; - 2; - 4} \right)\) là cặp vectơ chỉ phương của mặt phẳng\[\left( {ABC} \right)\].
Lời giải
a) Đúng.
\[\overrightarrow {AB} = \left( {{x_B} - {x_A};{y_B} - {y_A};{z_B} - {z_A}} \right) = \left( {0;1;1} \right)\]
b) Đúng.
Ta có: \[\overrightarrow {AB} = \left( {0;1;1} \right),\overrightarrow {AC} = \left( {3;0; - 1} \right)\]
\[\overrightarrow a = \left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right] = \left( { - 1;3; - 3} \right)\]
c) Sai.
Ta có: \[\overrightarrow {BC} = \left( {3; - 1; - 2} \right)\]
Do đó \(\overrightarrow b = 2\overrightarrow {BC} \) nên \(\overrightarrow {BC} ,\overrightarrow b \) là hai vectơ cùng phương. Do đó \(\overrightarrow {BC} ,\overrightarrow b \) không phải là cặp vectơ chỉ phương của mặt phẳng \[\left( {ABC} \right)\].
d) Sai
Mặt phẳng \[\left( {AOB} \right)\] có cặp vectơ chỉ phương \[\overrightarrow {OA} = \left( {1;1;1} \right),\overrightarrow {OB} = \left( {1;2;2} \right)\] nên có vectơ pháp tuyến là: \[\overrightarrow n = \left[ {\overrightarrow {OA} ,\overrightarrow {OB} } \right] = \left( {0; - 1;1} \right)\].Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.


