Câu hỏi:

03/02/2026 12 Lưu

Một phần sân trường được định vị bởi các điểm \(A,B,C,D\), như hình vẽ

Một phần sân trường được định vị bởi các điểm \(A,B,C,D\), như hình vẽ. (ảnh 1)
Bước đầu chúng được lấy “thăng bằng” để có cùng độ cao, biết \(ABCD\) là hình thang vuông ở \(A\) và \(B\) với độ dài \(AB = 25\,{\rm{m}}\), \(AD = 15\,{\rm{m}}\), \(BC = 18\,{\rm{m}}\). Do yêu cầu kĩ thuật, khi lát phẳng phàn sân trường phải thoát nước về góc sân ở \(C\) nên người ta lấy độ cao ở các điểm \(B\), \(C\), \(D\) xuống thấp hơn so với độ cao ở \(A\) là \(10\,{\rm{cm}}\), \(a\,{\rm{cm}}\), \(6\,{\rm{cm}}\) tương ứng. Giá trị của \(a\) là

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án:

17,2
Một phần sân trường được định vị bởi các điểm \(A,B,C,D\), như hình vẽ. (ảnh 2)

Chọn hệ trục tọa độ \(Oxyz\) sao cho: \[O \equiv A\], tia \[Ox \equiv AD\]; tia \(Oy \equiv AB\).

Khi đó, \(A\left( {0;\,0;\,0} \right)\); \(B\left( {0;\,2500;\,0} \right)\); \(C\left( {1800;\,2500;\,0} \right)\);\(D\left( {1500;\,0;\,0} \right)\).

Khi hạ độ cao các điểm ở các điểm \(B\), \(C\), \(D\) xuống thấp hơn so với độ cao ở \(A\) là \(10\,{\rm{cm}}\), \(a\,{\rm{cm}}\), \(6\,{\rm{cm}}\) tương ứng ta có các điểm mới \(B'\left( {0\,;\,2500\,;\, - 10} \right)\); \(C'\left( {1800\,;\,2500\,;\, - a} \right)\);\(D'\left( {1500\,;\,0\,;\, - 6} \right)\).

Theo bài ra có bốn điểm \(A\); \(B'\); \(C'\); \(D'\) đồng phẳng.

Phương trình mặt phẳng \(\left( {AB'D'} \right):x + y + 250z = 0\).

Do \(C'\left( {1800\,;\,\,2500\,;\, - a} \right) \in \left( {AB'D'} \right)\) nên có: \(1800 + 2500 - 250a = 0 \Leftrightarrow a = 17,2\).

Vậy \(a = 17,2\,{\rm{cm}}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trong tiết thể dục học về kĩ thuật chuyền bóng hơi, Nam và An đang tập chuyền bóng cho nhau (ảnh 3)

Chọn hệ trục như hình vẽ. Gọi \(M\) là điểm mà quả bóng chạm đất.

Khi đó \({x_M} = 0,5\), \({y_M} = \sqrt {4,{5^2} - 0,{5^2}}  = 2\sqrt 5 \)

 Vì \(\left( \alpha  \right) \bot \left( {Oxy} \right)\) nên \(\left( \alpha  \right)\) có véc tơ chỉ phương \(\overrightarrow k  = \left( {0;0;1} \right)\).

 Mà \(\left( \alpha  \right)\) có véc tơ chỉ phương \(\overrightarrow {OM}  = \left( {0,5;2\sqrt 5 ;0} \right)\)

Khi đó véc tơ pháp tuyến của \(\left( \alpha  \right)\) là \(\overrightarrow {{n_\alpha }}  = \left[ {\overrightarrow k ,\overrightarrow {OM} } \right] = \left( { - 2\sqrt 5 ;0,5;0} \right)\).

Vậy \(\left( \alpha  \right): - 2\sqrt 5 x + 0,5y = 0\) nên \(a =  - 2\sqrt 5 ;b = 0,5;c = 0;d = 0 \Rightarrow a + b + c + d \approx  - 4,5\).

Câu 2

a) \[\overrightarrow {AB}  = \left( {0;1;1} \right)\].

Đúng
Sai

b) Tích có hướng của hai vectơ \[\overrightarrow {AB} ,\overrightarrow {AC} \] là \[\overrightarrow a  = \left( { - 1;3; - 3} \right)\]. 

Đúng
Sai

c) \(\overrightarrow {BC} ,\overrightarrow b  = \left( {6; - 2; - 4} \right)\) là cặp vectơ chỉ phương của mặt phẳng\[\left( {ABC} \right)\].

Đúng
Sai
d) Vectơ pháp tuyến của mặt phẳng \[\left( {AOB} \right)\] là: \[\overrightarrow n  = \left( {1;1;2} \right)\].
Đúng
Sai

Lời giải

a) Đúng.

\[\overrightarrow {AB}  = \left( {{x_B} - {x_A};{y_B} - {y_A};{z_B} - {z_A}} \right) = \left( {0;1;1} \right)\]

b) Đúng.

Ta có: \[\overrightarrow {AB}  = \left( {0;1;1} \right),\overrightarrow {AC}  = \left( {3;0; - 1} \right)\]

\[\overrightarrow a  = \left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right] = \left( { - 1;3; - 3} \right)\]

c) Sai.

Ta có: \[\overrightarrow {BC}  = \left( {3; - 1; - 2} \right)\]

Do đó \(\overrightarrow b  = 2\overrightarrow {BC} \) nên \(\overrightarrow {BC} ,\overrightarrow b \) là hai vectơ cùng phương. Do đó \(\overrightarrow {BC} ,\overrightarrow b \) không phải là cặp vectơ chỉ phương của mặt phẳng \[\left( {ABC} \right)\]. 

d) Sai

Mặt phẳng \[\left( {AOB} \right)\] có cặp vectơ chỉ phương \[\overrightarrow {OA}  = \left( {1;1;1} \right),\overrightarrow {OB}  = \left( {1;2;2} \right)\] nên có vectơ pháp tuyến là: \[\overrightarrow n  = \left[ {\overrightarrow {OA} ,\overrightarrow {OB} } \right] = \left( {0; - 1;1} \right)\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP