Câu hỏi:

04/02/2026 5 Lưu

Trong không gian\[{\rm{Ox}}yz\], cho hai đường thẳng \[d:\left\{ \begin{array}{l}x = 1 + 2t\\y = 2 - 2t\\z = t\end{array} \right.\] và \[d':\left\{ \begin{array}{l}x =  - 2t'\\y =  - 5 + 3t'\\z = 4 + t'\end{array} \right.\]. Xét vị trí tương đối giữa \[2\] đường thẳng \(d\) và \[d'\]?

A. Cắt nhau.    
B. song song.  
C. Trùng nhau.            
D. Chéo nhau.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

\[d\]có VTCP \[\overrightarrow u  = \left( {2; - 2;1} \right)\]và đi qua \[M\left( {1;2;0} \right)\].

\[d'\]có VTCP \[\overrightarrow {u'}  = \left( { - 2;3;1} \right)\]và đi qua \[M'\left( {0; - 5;4} \right)\].

Từ đó ta có:

\[\overrightarrow {MM'}  = \left( { - 1; - 7;4} \right)\]và \[\left[ {\overrightarrow u ,\overrightarrow {u'} } \right] = \left( {\left| {\begin{array}{*{20}{c}}{ - 2}&1\\3&1\end{array}} \right|;\left| {\begin{array}{*{20}{c}}1&2\\1&{ - 2}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}2&{ - 2}\\{ - 2}&3\end{array}} \right|} \right) = \left( { - 5\,; - 4\,;2} \right) \ne \overrightarrow 0 \].

Lại có \[\left[ {\overrightarrow u ,\overrightarrow {u'} } \right].\overrightarrow {MM'}  = ( - 1).( - 5) + ( - 7).( - 4) + 4.2 = 41 \ne 0\].

Suy ra \[d\] chéo nhau với \[d'\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cách 1:

Ta có: Trong thời gian từ \(0\) đến \(3\)giây phương trình mô tả quỹ đạo chuyển động của viên đạn là:

                                        \(d:\left\{ \begin{array}{l}x = 1 + \frac{1}{3}t\\y = 2 + \frac{1}{3}t\\z = 4 + \frac{2}{3}t\end{array} \right.\)

với \(t = 3\) ta được điểm \[M\left( {2;\,3;\,6} \right)\].

Cách 2: Sau 3 giây viên đạn sẽ tới mục tiêu là điểm \(M\) sao cho \(\overrightarrow {AM}  = 3\overrightarrow v \)

            \( \Rightarrow \left\{ \begin{array}{l}{x_M} = 1 + 1 = 2\\{y_M} = 2 + 1 = 3\\{z_M} = 4 + 2 = 6\end{array} \right. \Rightarrow M\left( {2;\,3;\,6} \right)\)

Câu 2

a) Điểm \[M\left( {1;2;1} \right)\] thuộc đường thẳng \[d\].

Đúng
Sai

b) Đường thẳng \[d\] có một vectơ chỉ phương \[\overrightarrow u  = \left( {2; - 1;1} \right)\].

Đúng
Sai

c) Đường thẳng \[\Delta \] đi qua điểm \[A\] và song song với đường thẳng \[d\] có phương trình tham số là: \[\left\{ \begin{array}{l}x = 2 + 2t\\y = 3 + t\\z = 4 + t\end{array} \right.,\,t \in \mathbb{R}\].

Đúng
Sai
d) Đường thẳng \[\Delta \] đi qua điểm \[A\] và song song với đường thẳng \[d\] có phương trình chính tắc là: \[\frac{x}{2} = \frac{{y - 4}}{{ - 1}} = \frac{{z - 3}}{1}\].
Đúng
Sai

Lời giải

a) Đ

b) Đ

c) S

d) Đ

 

* Phương án a) đúng.

* Phương án b) đúng.

* Phương án c) sai: Đường thẳng \[\Delta \] đi qua điểm \[A\] và song song với đường thẳng \[d\] nên có một vectơ chỉ phương \[\overrightarrow {{u_\Delta }}  = \overrightarrow u  = \left( {2; - 1;1} \right)\]. Suy ra phương trình tham số đường thẳng \[\Delta \] là: \[\left\{ \begin{array}{l}x = 2 + 2t\\y = 3 - t\\z = 4 + t\end{array} \right.,\,t \in \mathbb{R}\].

* Phương án d) đúng:  Đường thẳng \[\Delta \] đi qua điểm \[A\] và song song với đường thẳng \[d\] có phương trình chính tắc là: \[\frac{x}{2} = \frac{{y - 4}}{{ - 1}} = \frac{{z - 3}}{1}\].