Câu hỏi:

04/02/2026 8 Lưu

Một phần mềm mô phỏng vận động viên tập bắn bia mục tiêu có kích thước nhỏ \(\left( {42 \times 42cm} \right)\) bằng súng tiểu liên AK trong không gian \(Oxyz\). Cho biết vận động viên đó sử dụng thước ngắm 3 và đứng cách xa bia mục tiêu là \(100m\) , trục \(d\) của nòng súng và cọc đỡ bia \(d'\) lần lượt có phương trình

            \(d:\left\{ \begin{array}{l}x = t\\y = 2\\z = 4\end{array} \right.\) và \(d':\left\{ \begin{array}{l}x = 1\\y = 2\\z = 1 + 3t'\end{array} \right.\). Để bắn trúng hồng tâm ( điểm 10 ) thì vận động viên phải ngắm bắn vào điểm \(N\left( {a;b;c} \right) \in d'\) và cách giao điểm của \(d\) và \(d'\) một khoảng \(6cm\). Khi \(c < 0\), tính giá trị biểu thức \(a - b + c\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án:

- 5

Gọi \(M = d \cap d' \Rightarrow M\left( {1;2;4} \right)\).

Ta có \(N \in d' \Rightarrow N\left( {1;2;1 + 3t'} \right) \Rightarrow \overrightarrow {MN}  = \left( {0;0;3t' - 3} \right)\). Theo giả thiết \(MN = 6\)

Suy ra \(\left| {3t' - 3} \right| = 6 \Leftrightarrow \left[ \begin{array}{l}t' = 3\\t' =  - 1\end{array} \right. \Rightarrow \left[ \begin{array}{l}N\left( {1;2;7} \right)\\N\left( {1;2; - 2} \right)\end{array} \right.\). Vì \(c < 0 \Rightarrow \)nhận \(N\left( {1;2; - 2} \right)\)

Vậy \(a = 1,b = 2,c =  - 2 \Rightarrow a - b + c =  - 5.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cách 1:

Ta có: Trong thời gian từ \(0\) đến \(3\)giây phương trình mô tả quỹ đạo chuyển động của viên đạn là:

                                        \(d:\left\{ \begin{array}{l}x = 1 + \frac{1}{3}t\\y = 2 + \frac{1}{3}t\\z = 4 + \frac{2}{3}t\end{array} \right.\)

với \(t = 3\) ta được điểm \[M\left( {2;\,3;\,6} \right)\].

Cách 2: Sau 3 giây viên đạn sẽ tới mục tiêu là điểm \(M\) sao cho \(\overrightarrow {AM}  = 3\overrightarrow v \)

            \( \Rightarrow \left\{ \begin{array}{l}{x_M} = 1 + 1 = 2\\{y_M} = 2 + 1 = 3\\{z_M} = 4 + 2 = 6\end{array} \right. \Rightarrow M\left( {2;\,3;\,6} \right)\)

Câu 2

a) Điểm \[M\left( {1;2;1} \right)\] thuộc đường thẳng \[d\].

Đúng
Sai

b) Đường thẳng \[d\] có một vectơ chỉ phương \[\overrightarrow u  = \left( {2; - 1;1} \right)\].

Đúng
Sai

c) Đường thẳng \[\Delta \] đi qua điểm \[A\] và song song với đường thẳng \[d\] có phương trình tham số là: \[\left\{ \begin{array}{l}x = 2 + 2t\\y = 3 + t\\z = 4 + t\end{array} \right.,\,t \in \mathbb{R}\].

Đúng
Sai
d) Đường thẳng \[\Delta \] đi qua điểm \[A\] và song song với đường thẳng \[d\] có phương trình chính tắc là: \[\frac{x}{2} = \frac{{y - 4}}{{ - 1}} = \frac{{z - 3}}{1}\].
Đúng
Sai

Lời giải

a) Đ

b) Đ

c) S

d) Đ

 

* Phương án a) đúng.

* Phương án b) đúng.

* Phương án c) sai: Đường thẳng \[\Delta \] đi qua điểm \[A\] và song song với đường thẳng \[d\] nên có một vectơ chỉ phương \[\overrightarrow {{u_\Delta }}  = \overrightarrow u  = \left( {2; - 1;1} \right)\]. Suy ra phương trình tham số đường thẳng \[\Delta \] là: \[\left\{ \begin{array}{l}x = 2 + 2t\\y = 3 - t\\z = 4 + t\end{array} \right.,\,t \in \mathbb{R}\].

* Phương án d) đúng:  Đường thẳng \[\Delta \] đi qua điểm \[A\] và song song với đường thẳng \[d\] có phương trình chính tắc là: \[\frac{x}{2} = \frac{{y - 4}}{{ - 1}} = \frac{{z - 3}}{1}\].

Câu 7

A. \( - x + 2y - z + 5 = 0\).                                                                        

B. \(2x - y + 4 = 0\).           

C. \(x - 2y - 5 = 0\).                
D. \( - 12x + 6y + 5 = 0\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP