Trong không gian với hệ tọa độ \[{\rm{O}}xyz\], cho hai mặt phẳng \((P):x + 2y - 2z + 1 = 0,\) \((Q):x + my + (m - 1)z + 2019 = 0\).
Trong không gian với hệ tọa độ \[{\rm{O}}xyz\], cho hai mặt phẳng \((P):x + 2y - 2z + 1 = 0,\) \((Q):x + my + (m - 1)z + 2019 = 0\).
a) Với \(m = 1\) thì góc giữa mặt phẳng \(\left( P \right)\) và mặt phẳng \(\left( Q \right)\) bằng \(30^\circ \).
b) Điểm \(H\left( {2;\,2;\,1} \right)\) là hình chiếu vuông góc của gốc toạ độ \(O\) xuống mặt phẳng \(\left( R \right)\), côsin góc giữa mặt phẳng \(\left( P \right)\) và mặt phẳng \(\left( R \right)\) là \(\frac{4}{9}\).
c) \({m_1},\,{m_2}\) là hai giá trị của \(m\) để góc giữa hai mặt phẳng \[\left( P \right)\], \[\left( Q \right)\] bằng \(60^\circ \). Khi đó \({m_1} + {m_2} = - 1\).
Quảng cáo
Trả lời:
a) Sai
Với \(m = 1\) thì mặt phẳng \(\left( Q \right)\) có phương trình: \(x + y + 2019 = 0\).
Mặt phẳng \((P):x + 2y - 2z + 1 = 0\) có véctơ pháp tuyến là \(\overrightarrow {{n_1}} = \left( {1;\,2;\, - 2} \right)\).
Mặt phẳng \(\left( Q \right)\) có véctơ pháp tuyến là \(\overrightarrow {{n_2}} = \left( {1;\,1;\,0} \right)\).
\[\left| {cos\left( {\overrightarrow {{n_1}} ;\,\overrightarrow {{n_2}} } \right)} \right| = \frac{{\left| {1.1 + 2.1 + \left( { - 2} \right).0} \right|}}{{\sqrt {{1^2} + {2^2} + {{\left( { - 2} \right)}^2}} \sqrt {{1^2} + {1^2}} }} = \frac{{\sqrt 2 }}{2}\].
Vậy góc giữa mặt phẳng \(\left( P \right)\) và mặt phẳng \(\left( Q \right)\) bằng \(45^\circ \).
Ta có \(\overrightarrow {OH} = \left( {2;\,2;\,1} \right)\) là véctơ pháp tuyến của mặt phẳng\(\left( R \right)\).
\(\left| {cos\left( {\overrightarrow {OH} ,\,\overrightarrow {{n_1}} } \right)} \right| = \frac{{\left| {1.2 + 2.2 + \left( { - 2} \right).1} \right|}}{{\sqrt {{1^2} + {2^2} + {{\left( { - 2} \right)}^2}} \sqrt {{2^2} + {2^2} + {1^2}} }} = \frac{4}{9}\).
Vậy côsin góc giữa mặt phẳng \(\left( P \right)\) và mặt phẳng \(\left( R \right)\) là \(\frac{4}{9}\).
c) Sai.
Mặt phẳng \((P):x + 2y - 2z + 1 = 0\) có véctơ pháp tuyến là \(\overrightarrow {{n_1}} = \left( {1;\,2;\, - 2} \right)\).
Mặt phẳng \(\left( Q \right)\) có véctơ pháp tuyến là \(\overrightarrow {{n_2}} = \left( {1;\,m;\,m - 1} \right)\).
\(\left| {cos\left( {\overrightarrow {{n_1}} ;\,\overrightarrow {{n_2}} } \right)} \right| = \frac{1}{2} \Leftrightarrow \frac{{\left| {1.1 + 2m - 2\left( {m - 1} \right)} \right|}}{{\sqrt {{1^2} + {2^2} + {{\left( { - 2} \right)}^2}} \sqrt {{1^2} + {m^2} + {{\left( {m - 1} \right)}^2}} }} = \frac{1}{2}\)\( \Leftrightarrow \frac{1}{{\sqrt {2{m^2} - 2m + 2} }} = \frac{1}{2} \Leftrightarrow {m^2} - m - 1 = 0\).
\( \Rightarrow {m_1} + {m_2} = 1\).
d) Sai.
\(\left| {cos\left( {\overrightarrow {{n_1}} ;\,\overrightarrow {{n_2}} } \right)} \right| = \frac{{\left| {1.1 + 2m - 2\left( {m - 1} \right)} \right|}}{{\sqrt {{1^2} + {2^2} + {{\left( { - 2} \right)}^2}} \sqrt {{1^2} + {m^2} + {{\left( {m - 1} \right)}^2}} }} = \frac{1}{{3\sqrt {2{m^2} - 2m + 2} }} = \frac{1}{{3.\sqrt {2{{\left( {m - \frac{1}{2}} \right)}^2} + \frac{3}{2}} }} \le \frac{1}{{3\sqrt {\frac{3}{2}} }}\) Góc giữa hai mặt phẳng \[\left( P \right)\] và \[\left( Q \right)\] nhỏ nhất \[ \Leftrightarrow {\rm{ }}m = \frac{1}{2}\].
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
a) Một vectơ pháp tuyến của \(\left( {{A_1}{B_1}{C_1}{D_1}} \right)\) là \(\overrightarrow {{n_1}} = \left( {1;\,0;\, - 1} \right)\).
b) Với \(x = 3\) thì góc của \({B_1}D\) mặt phẳng \(\left( {{A_1}{B_1}{C_1}{D_1}} \right)\) bằng \(60^\circ \).
c) Với \(x = 2\) thì góc giữa mặt phẳng \(\left( {C{B_1}{D_1}} \right)\) và mặt phẳng \(\left( {{A_1}{B_1}{C_1}{D_1}} \right)\)bằng \(45^\circ \).
Lời giải
a) Sai.
Ta có \({D_1}\left( {0;\,0;\,0} \right)\), \({A_1}\left( {0;\,1;\,0} \right)\), C1 (1;0;0), \({B_1}\left( {1;\,1;\,0} \right)\).
\(\overrightarrow {{D_1}{A_1}} = \left( {0;\,1;\,0} \right)\), \(\overrightarrow {{D_1}{C_1}} = \left( {1;\,0;\,0} \right)\).
Một vectơ pháp tuyến của \(\left( {{A_1}{B_1}{C_1}{D_1}} \right)\) là \(\overrightarrow {{n_1}} = \left[ {\overrightarrow {{D_1}{A_1}} ;\,\overrightarrow {{D_1}{C_1}} } \right] = \left( {0;\,0;\, - 1} \right)\).
Ta có \(D\left( {0;\,0;\,x} \right)\), \(\overrightarrow {D{B_1}} = \left( {1;\,1;\, - x} \right)\).
Vì góc của \({B_1}D\) mặt phẳng \(\left( {{A_1}{B_1}{C_1}{D_1}} \right)\) bằng \(60^\circ \).
Suy ra \(sin\left( {{B_1}D;\,\left( {{A_1}{B_1}{C_1}{D_1}} \right)} \right) = \frac{{\sqrt 3 }}{2} \Leftrightarrow \left| {cos\left( {\overrightarrow {{n_1}} ;\,\overrightarrow {D{B_1}} } \right)} \right| = \frac{{\sqrt 3 }}{2}\)\( \Leftrightarrow \frac{{\left| x \right|}}{{\sqrt {{x^2} + 2} }} = \frac{{\sqrt 3 }}{2} \Leftrightarrow {x^2} - 6 = 0 \Rightarrow x = \sqrt 6 \).
c) Sai.
Ta có \(C\left( {1;\,0;\,x} \right),\,\overrightarrow {{D_1}{B_1}} = \left( {1;\,1;\,0} \right),\,\overrightarrow {{D_1}C} = \left( {1;\,0;\,x} \right)\).
Mặt phẳng \(\left( {C{B_1}{D_1}} \right)\) có một vectơ pháp tuyến là \(\overrightarrow {{n_2}} = \left[ {\overrightarrow {{D_1}{B_1}} ,\,\overrightarrow {{D_1}C} } \right] = \left( {x;\, - x;\, - 1} \right)\).
Vì góc giữa mặt phẳng \(\left( {C{B_1}{D_1}} \right)\) và mặt phẳng \(\left( {{A_1}{B_1}{C_1}{D_1}} \right)\)bằng \(45^\circ \).
Suy ra \(\left| {cos\left( {\overrightarrow {{n_1}} ,\,\overrightarrow {{n_2}} } \right)} \right| = \frac{{\sqrt 2 }}{2} \Leftrightarrow \frac{{\left| 1 \right|}}{{\sqrt {2{x^2} + 1} }} = \frac{{\sqrt 2 }}{2} \Leftrightarrow 2{x^2} - 1 = 0 \Rightarrow x = \frac{{\sqrt 2 }}{2}\).
d) Sai
Gọi góc giữa đường thẳng \({B_1}D\) mặt phẳng \(\left( {{A_1}{B_1}{C_1}{D_1}} \right)\) là \(\alpha \).
Khi đó \(\sin \alpha = \frac{{\left| x \right|}}{{\sqrt {{x^2} + 2} }} = \frac{x}{{\sqrt {{x^2} + 2} }} < 1\).
Không tồn tại \(x\)để góc giữa đường thẳng \({B_1}D\) mặt phẳng \(\left( {{A_1}{B_1}{C_1}{D_1}} \right)\) lớn nhất.Lời giải
Ta có : \[\overrightarrow {AB} = \left( {0;15;\frac{{ - 4}}{5}} \right)\], mặt phẳng \[\left( {Oxy} \right)\] có vecto pháp tuyến là \[\overrightarrow n = \left( {0;0;1} \right)\].
\[\sin \left( {AB,\left( {Oxy} \right)} \right) = \frac{{\left| {0.0 + 15.0 + 1.\frac{{ - 4}}{5}} \right|}}{{\sqrt {{0^2} + {{15}^2} + {{\left( {\frac{{ - 4}}{5}} \right)}^2}} .\sqrt {{0^2} + {0^2} + 1} }} = \frac{{4\sqrt {5641} }}{{5641}}\]
\[ \Rightarrow \left( {AB,\left( {Oxy} \right)} \right) \approx 3^\circ \]
Vậy góc giữa đường bay và sân bay khoảng \[3^\circ \].Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
a) Véc tơ pháp tuyến của mặt phẳng \[\left( \alpha \right)\] là \[\overrightarrow {{n_\alpha }} \left( {1; - 2;2} \right)\], mặt phẳng \[\left( \beta \right)\] là \[\overrightarrow {{n_\beta }} \left( {2\,;\,m\,;\,m} \right)\].
b) Véc tơ chỉ phương của đường thẳng \[\Delta \] là \[\overrightarrow {{u_\Delta }} \left( {3\,;\, - 1\,;\,5} \right)\].
c) Góc giữa đường thẳng \[\Delta \] và mặt phẳng \[\left( \alpha \right)\] bằng \(60^\circ \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
![Trong không gian với hệ tọa độ Oxy], cho lăng trụ tứ diện đều \(ABCD.A'B'C'D'\) cạnh đáy bằng (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2026/02/blobid14-1770298834.png)