Câu hỏi:

06/02/2026 3 Lưu

Trong không gian \(Oxyz\), cho hai điểm \(M\left( {3; - 2;1} \right)\), \(N\left( {1;2;3} \right)\). Phương trình đường thẳng \(MN\) là

A. \(\left\{ \begin{array}{l}x = 1 + t\\y =  - 2 + 2t\\z =  - 1 + 3t\end{array} \right.,t \in \mathbb{R}\). 
B. \(\left\{ \begin{array}{l}x = 1 + t\\y = 2 - 2t\\z = 3 - t\end{array} \right.,t \in \mathbb{R}\).      
C. \(\left\{ \begin{array}{l}x =  - 1 + t\\y =  - 2 - 2t\\z =  - 3 - t\end{array} \right.,t \in \mathbb{R}\).    
D. \(\left\{ \begin{array}{l}x = 1 + t\\y = 2\\z = 3 + t\end{array} \right.,t \in \mathbb{R}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có \(\overrightarrow {MN}  = \left( { - 2;4;2} \right)\).

Đường thẳng \(MN\) đi qua điểm \(N\left( {1;2;3} \right)\) và có một vectơ chỉ phương là \(\overrightarrow u  =  - \frac{1}{2}\overrightarrow {MN}  = \left( {1; - 2; - 1} \right)\) nên có phương trình là \(\left\{ \begin{array}{l}x = 1 + t\\y = 2 - 2t\\z = 3 - t\end{array} \right.\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đường thẳng \(\Delta :\frac{x}{1} = \frac{y}{{ - 1}} = \frac{z}{2}\)có véc tơ chỉ phương \(\overrightarrow u  = \left( {1; - 1;2} \right)\),

Mặt phẳng \(\left( \alpha  \right)\) có vectơ pháp tuyến\(\overrightarrow n  = \left( {1;2; - 1} \right)\).

Gọi \(\varphi \) là góc giữa đường thẳng \(\Delta \) và mặt phẳng \(\left( \alpha  \right)\), khi đó

\(\sin \varphi  = \left| {\cos \left( {\overrightarrow u ,\overrightarrow n } \right)} \right| = \frac{{\left| {\overrightarrow u .\overrightarrow n } \right|}}{{\left| {\overrightarrow u } \right|.\left| {\overrightarrow n } \right|}} = \frac{{\left| {1 - 2 - 2} \right|}}{{\sqrt 6 .\sqrt 6 }} = \frac{1}{2} \Rightarrow \varphi  = 30^\circ \).

Câu 3

a)  Điểm \(A\)thuộc mặt phẳng \(\left( P \right)\).

Đúng
Sai

b)  Mặt phẳng \[\left( P \right)\] song song với trục \(Oz\).

Đúng
Sai

c)  Mặt phẳng \[\left( \alpha  \right)\] đi qua \(A,B\) vuông góc với mặt phẳng \[\left( P \right)\] có phương trình \[2x + 2y + z - 1 = 0\]

Đúng
Sai
d)  Mặt phẳng \[\left( Q \right)\] song song với mặt phẳng \[\left( P \right)\], cách \[\left( P \right)\] một khoảng bằng \[2\sqrt 2 \] và cắt trục \[Ox\] tại điểm có hoành độ dương có phương trình:\[\left( Q \right):x - y - 1 = 0\]
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\overrightarrow {{n_2}}  = \left( {2; - 1;2} \right)\).   
B. \(\overrightarrow {{n_4}}  = \left( {3;2;1} \right)\).     
C. \(\overrightarrow {{n_3}}  = \left( {3;2;2} \right)\).          
D. \(\overrightarrow {{n_1}}  = \left( {3;2; - 1} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(Q\left( {1; - 2;2} \right)\).          
B. \(N\left( {1; - 1; - 1} \right)\).      
C. \(P\left( {2; - 1; - 1} \right)\).  
D. \(M\left( {1;1; - 1} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(5x + 2y - 3z - 17 = 0\).                                                                       

B. \(2x + 2y + z - 11 = 0\).

C. \(5x + 2y - 3z - 11 = 0\).                
D. \(2x + 2y + z - 17 = 0\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP