Trong không gian với hệ trục tọa độ \[Oxyz\], cho đường thẳng \(\Delta :\frac{x}{1} = \frac{y}{{ - 1}} = \frac{z}{2}\) và mặt phẳng \(\left( \alpha \right):x + 2y - z = 0\). Góc giữa đường thẳng \(\Delta \) và mặt phẳng \(\left( \alpha \right)\) bằng
Câu hỏi trong đề: Đề kiểm tra Ôn tập chương 5 (có lời giải) !!
Quảng cáo
Trả lời:
Đường thẳng \(\Delta :\frac{x}{1} = \frac{y}{{ - 1}} = \frac{z}{2}\)có véc tơ chỉ phương \(\overrightarrow u = \left( {1; - 1;2} \right)\),
Mặt phẳng \(\left( \alpha \right)\) có vectơ pháp tuyến\(\overrightarrow n = \left( {1;2; - 1} \right)\).
Gọi \(\varphi \) là góc giữa đường thẳng \(\Delta \) và mặt phẳng \(\left( \alpha \right)\), khi đó
\(\sin \varphi = \left| {\cos \left( {\overrightarrow u ,\overrightarrow n } \right)} \right| = \frac{{\left| {\overrightarrow u .\overrightarrow n } \right|}}{{\left| {\overrightarrow u } \right|.\left| {\overrightarrow n } \right|}} = \frac{{\left| {1 - 2 - 2} \right|}}{{\sqrt 6 .\sqrt 6 }} = \frac{1}{2} \Rightarrow \varphi = 30^\circ \).Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đường thẳng \({d_2}\) có véctơ chỉ phương \(\overrightarrow v = \left( {1; - 2;3} \right)\) và đi qua điểm \(N\left( { - 3;1; - 4} \right)\)
Ta có: \(\left[ {\overrightarrow v ,\overrightarrow u } \right] = \left( {4;5;2} \right) \ne \overrightarrow 0 \); \(\overrightarrow {MN} = \left( { - 4;4; - 6} \right)\); \(\left[ {\overrightarrow v ,\overrightarrow u } \right].\overrightarrow {MN} = - 16 + 20 - 12 = - 8 \ne 0\)
\( \Rightarrow \) \({d_1}\) và \({d_2}\) chéo nhau.
Mặt phẳng \(\left( P \right)\) cách đều hai đường thẳng \({d_1}\) và \({d_2}\) nên \(\left( P \right)\) nhận \(\left[ {\overrightarrow v ,\overrightarrow u } \right] = \left( {4;5;2} \right)\) làm một vectơ pháp tuyến và đi qua trung điểm \(I\left( { - 1; - 1; - 1} \right)\) của đoạn \(MN\)
Suy ra phương trình của \(\left( P \right)\): \(4\left( {x + 1} \right) + 5\left( {y + 1} \right) + 2\left( {z + 1} \right) = 0 \Leftrightarrow 4x + 5y + 2z + 11 = 0\)
\( \Rightarrow a = 4;b = 5;c = 2\) \( \Rightarrow a + 2b + 3c = 20\).Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
a) Điểm \(A\)thuộc mặt phẳng \(\left( P \right)\).
b) Mặt phẳng \[\left( P \right)\] song song với trục \(Oz\).
c) Mặt phẳng \[\left( \alpha \right)\] đi qua \(A,B\) vuông góc với mặt phẳng \[\left( P \right)\] có phương trình \[2x + 2y + z - 1 = 0\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
