Câu hỏi:

06/02/2026 8 Lưu

Trong không gian với hệ trục tọa độ \[Oxyz\], cho đường thẳng \(\Delta :\frac{x}{1} = \frac{y}{{ - 1}} = \frac{z}{2}\) và mặt phẳng \(\left( \alpha  \right):x + 2y - z = 0\). Góc giữa đường thẳng \(\Delta \) và mặt phẳng \(\left( \alpha  \right)\) bằng

A. \(60^\circ \).           
B. \(30^\circ \).          
C. \(150^\circ \).        
D. \(120^\circ \)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đường thẳng \(\Delta :\frac{x}{1} = \frac{y}{{ - 1}} = \frac{z}{2}\)có véc tơ chỉ phương \(\overrightarrow u  = \left( {1; - 1;2} \right)\),

Mặt phẳng \(\left( \alpha  \right)\) có vectơ pháp tuyến\(\overrightarrow n  = \left( {1;2; - 1} \right)\).

Gọi \(\varphi \) là góc giữa đường thẳng \(\Delta \) và mặt phẳng \(\left( \alpha  \right)\), khi đó

\(\sin \varphi  = \left| {\cos \left( {\overrightarrow u ,\overrightarrow n } \right)} \right| = \frac{{\left| {\overrightarrow u .\overrightarrow n } \right|}}{{\left| {\overrightarrow u } \right|.\left| {\overrightarrow n } \right|}} = \frac{{\left| {1 - 2 - 2} \right|}}{{\sqrt 6 .\sqrt 6 }} = \frac{1}{2} \Rightarrow \varphi  = 30^\circ \).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đường thẳng \({d_2}\) có véctơ chỉ phương \(\overrightarrow v  = \left( {1; - 2;3} \right)\) và đi qua điểm \(N\left( { - 3;1; - 4} \right)\)

Ta có: \(\left[ {\overrightarrow v ,\overrightarrow u } \right] = \left( {4;5;2} \right) \ne \overrightarrow 0 \); \(\overrightarrow {MN}  = \left( { - 4;4; - 6} \right)\); \(\left[ {\overrightarrow v ,\overrightarrow u } \right].\overrightarrow {MN}  =  - 16 + 20 - 12 =  - 8 \ne 0\)

\( \Rightarrow \) \({d_1}\) và \({d_2}\) chéo nhau.

Mặt phẳng \(\left( P \right)\) cách đều hai đường thẳng \({d_1}\) và \({d_2}\) nên \(\left( P \right)\) nhận \(\left[ {\overrightarrow v ,\overrightarrow u } \right] = \left( {4;5;2} \right)\) làm một vectơ pháp tuyến và đi qua trung điểm \(I\left( { - 1; - 1; - 1} \right)\) của đoạn \(MN\)

Suy ra phương trình của \(\left( P \right)\): \(4\left( {x + 1} \right) + 5\left( {y + 1} \right) + 2\left( {z + 1} \right) = 0 \Leftrightarrow 4x + 5y + 2z + 11 = 0\)

\( \Rightarrow a = 4;b = 5;c = 2\) \( \Rightarrow a + 2b + 3c = 20\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

a)  Điểm \(A\)thuộc mặt phẳng \(\left( P \right)\).

Đúng
Sai

b)  Mặt phẳng \[\left( P \right)\] song song với trục \(Oz\).

Đúng
Sai

c)  Mặt phẳng \[\left( \alpha  \right)\] đi qua \(A,B\) vuông góc với mặt phẳng \[\left( P \right)\] có phương trình \[2x + 2y + z - 1 = 0\]

Đúng
Sai
d)  Mặt phẳng \[\left( Q \right)\] song song với mặt phẳng \[\left( P \right)\], cách \[\left( P \right)\] một khoảng bằng \[2\sqrt 2 \] và cắt trục \[Ox\] tại điểm có hoành độ dương có phương trình:\[\left( Q \right):x - y - 1 = 0\]
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\overrightarrow {{n_2}}  = \left( {2; - 1;2} \right)\).   
B. \(\overrightarrow {{n_4}}  = \left( {3;2;1} \right)\).     
C. \(\overrightarrow {{n_3}}  = \left( {3;2;2} \right)\).          
D. \(\overrightarrow {{n_1}}  = \left( {3;2; - 1} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(Q\left( {1; - 2;2} \right)\).          
B. \(N\left( {1; - 1; - 1} \right)\).      
C. \(P\left( {2; - 1; - 1} \right)\).  
D. \(M\left( {1;1; - 1} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP