Câu hỏi:

06/02/2026 3 Lưu

Trong không gian với hệ trục tọa độ \[Oxyz\], cho hai điểm \(I\left( {2;1;0} \right)\) và \(A\left( {1;2;3} \right)\). Mặt cầu \(\left( S \right)\) tâm \(I\) và đi qua điểm \(A\) có phương trình là

A. \(\left( S \right):\,{\left( {x + 2} \right)^2} + {\left( {y + 1} \right)^2} + {z^2} = \sqrt {11} \).     

B. \(\left( S \right):\,{\left( {x - 2} \right)^2} + {\left( {y - 1} \right)^2} + {z^2} = \sqrt {11} \).

C. \(\left( S \right):\,{\left( {x - 2} \right)^2} + {\left( {y - 1} \right)^2} + {z^2} = 11\).            
D. \(\left( S \right):\,{\left( {x + 2} \right)^2} + {\left( {y + 1} \right)^2} + {z^2} = 11\

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Mặt cầu \(\left( S \right)\) có tâm \(I\left( {2;1;0} \right)\) và bán kính \(R = IA = \sqrt {11} \) có phương trình là: \(\left( S \right):\,{\left( {x - 2} \right)^2} + {\left( {y - 1} \right)^2} + {z^2} = 11\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(Q\left( {1; - 2;2} \right)\).         
B. \(N\left( {1; - 1; - 1} \right)\).      
C. \(P\left( {2; - 1; - 1} \right)\).  
D. \(M\left( {1;1; - 1} \right)\).

Lời giải

Thay toạ độ các điểm \(Q,N,P,M\) vào phương trình mặt phẳng \(\left( \alpha  \right)\), thấy toạ độ điểm \(N\)thoả mãn.

Lời giải

Đường thẳng \(\,{d_1}:\,\,\frac{{x + 1}}{1} = \frac{{y - 2}}{1} = \frac{{z + 2}}{{ - 1}}\)có véc tơ chỉ phương \(\overrightarrow u  = \left( {1;1; - 1} \right)\),

Đường thẳng \(\,{d_2}:\,\,\frac{{x - 1}}{1} = \frac{{y + 2}}{{ - 1}} = \frac{{z + 1}}{1}\)có véc tơ chỉ phương \(\overrightarrow u ' = \left( {1; - 1;1} \right)\).

Gọi \(\varphi \) là góc giữa đường thẳng \({d_1}\) và đường thẳng \({d_2}\), khi đó

\(\cos \varphi  = \frac{{\left| {\overrightarrow u .\overrightarrow {u'} } \right|}}{{\left| {\overrightarrow u } \right|.\left| {\overrightarrow {u'} } \right|}} = \frac{{\left| {1.1 + 1.\left( { - 1} \right) + \left( { - 1} \right).1} \right|}}{{\sqrt {{1^2} + {1^2} + {{\left( { - 1} \right)}^2}} .\sqrt {{1^2} + {{\left( { - 1} \right)}^2} + {1^2}} }} = \frac{1}{3}.\)

Câu 4

A. \(\overrightarrow {{n_2}}  = \left( {2; - 1;2} \right)\).   
B. \(\overrightarrow {{n_4}}  = \left( {3;2;1} \right)\).     
C. \(\overrightarrow {{n_3}}  = \left( {3;2;2} \right)\).          
D. \(\overrightarrow {{n_1}}  = \left( {3;2; - 1} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(5x + 2y - 3z - 17 = 0\).                                                                       

B. \(2x + 2y + z - 11 = 0\).

C. \(5x + 2y - 3z - 11 = 0\).                
D. \(2x + 2y + z - 17 = 0\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\left( { - 1;1;3} \right)\). 
B. \(\left( {2; - 4;1} \right)\).  
C. \(\left( {1;1;3} \right)\).            
D. \(\left( {2;4;1} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(\left\{ \begin{array}{l}x = 1 + t\\y =  - 2 + 2t\\z =  - 1 + 3t\end{array} \right.,t \in \mathbb{R}\). 
B. \(\left\{ \begin{array}{l}x = 1 + t\\y = 2 - 2t\\z = 3 - t\end{array} \right.,t \in \mathbb{R}\).      
C. \(\left\{ \begin{array}{l}x =  - 1 + t\\y =  - 2 - 2t\\z =  - 3 - t\end{array} \right.,t \in \mathbb{R}\).    
D. \(\left\{ \begin{array}{l}x = 1 + t\\y = 2\\z = 3 + t\end{array} \right.,t \in \mathbb{R}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP