Câu hỏi:

06/02/2026 3 Lưu

Cho \(A\left( {1\,;\,2\,;\,3} \right)\), \(B\left( {5\,;\,5\,;\,8\,} \right)\) và đường thẳng d:  x=3+ty=32+2tz=522t. Mặt cầu \(\left( S \right)\) có đường kính \(AB\).

Trong các khẳng định sau, khẳng định nào đúng hay sai?

a).Mặt cầu \(\left( S \right)\) có tâm \(I\left( {3\,;\,\frac{7}{2}\,;\,\frac{{11}}{2}} \right)\) và bán kính \(R = \frac{{5\sqrt 2 }}{2}\)...

Đúng
Sai

b).Điểm \(O\left( {0\,;\,0\,;\,0} \right)\) nằm trong mặt cầu \(\left( S \right)\).

Đúng
Sai

c).Đường thẳng \(d\) cắt mặt cầu \(\left( S \right)\) tại hai điểm phân biệt.

Đúng
Sai
d).Mặt phẳng \(\left( P \right):\,\,3x + 4y - 8 = 0\) cắt mặt cầu \(\left( S \right)\) theo giao tuyến là một đường tròn đường kính \(\sqrt {14} \).
Đúng
Sai

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đúng:

Gọi \(I\) là trung điểm của \(AB\), suy ra \(I\left( {3\,;\,\frac{7}{2}\,;\,\frac{{11}}{2}} \right)\).

Và \(\overrightarrow {AB}  = \left( {4\,;\,3\,;\,5} \right) \Leftrightarrow AB = \sqrt {{4^2} + {3^2} + {5^2}}  = 5\sqrt 2 \).

Vậy mặt cầu đường kính \(AB\) có tâm \(I\left( {3\,;\,\frac{7}{2}\,;\,\frac{{11}}{2}} \right)\) và bán kính \(R = \frac{{AB}}{2} = \frac{{5\sqrt 2 }}{2}\).

b) Sai:

Ta có \[\overrightarrow {OI}  = \left( {3\,;\,\frac{7}{2}\,;\,\frac{{11}}{2}} \right) \Rightarrow OI = \sqrt {{3^2} + {{\left( {\frac{7}{2}} \right)}^2} + {{\left( {\frac{{11}}{2}} \right)}^2}}  = \frac{{\sqrt {206} }}{2} > \frac{{5\sqrt 2 }}{2}\].

Suy ra điểm \(O\) nằm ngoài mặt cầu.

c) Sai:

Cách 1. Sử dụng công thức khoảng cách từ điểm đến đường thẳng:

Ta có đường thẳng d:  x=3+ty=32+2tz=522t có \(M\left( {3\,;\,\frac{3}{2}\,;\,\frac{5}{2}} \right)\) và \(\overrightarrow u  = \left( {1\,;\,2\,;\, - 2} \right)\).

Khi đó \(\overrightarrow {IM}  = \left( {0\,;\, - 2\,;\, - 3} \right)\)\( \Rightarrow \left[ {\overrightarrow {IM} \,,\,\overrightarrow u } \right] = \left( {10\,;\, - 3\,;\,2} \right)\).

Do đó \(d\left( {I,d} \right) = \frac{{\left| {\left[ {\overrightarrow {IM} \,,\,\overrightarrow u } \right]} \right|}}{{\left| {\overrightarrow u } \right|}} = \frac{{\sqrt {{{10}^2} + {{\left( { - 3} \right)}^2} + {2^2}} }}{{\sqrt {{1^2} + {2^2} + {{\left( { - 2} \right)}^2}} }} = \frac{{\sqrt {113} }}{3} > \frac{{5\sqrt 2 }}{2}\).

Vậy đường thẳng \(d\) nằm ngoài mặt cầu \(\left( S \right)\).

Cách 2. Sử dụng số giao điểm của đường thẳng và mặt cầu :

Ta có phương trình mặt cầu \(\left( S \right)\) là \({\left( {x - 3} \right)^2} + {\left( {y - \frac{7}{2}} \right)^2} + {\left( {z - \frac{{11}}{2}} \right)^2} = {\left( {\frac{{5\sqrt 2 }}{2}} \right)^2}\).

Thay \[x = 3 + t\,;y = \frac{3}{2} + 2t\,;\,\,z = \frac{5}{2} - 2t\] vào \(\left( S \right)\) ta có

\(\begin{array}{l}{\left( {3 + t - 3} \right)^2} + {\left( {\frac{3}{2} + 2t - \frac{7}{2}} \right)^2} + {\left( {\frac{5}{2} - 2t - \frac{{11}}{2}} \right)^2} = {\left( {\frac{{5\sqrt 2 }}{2}} \right)^2}\\ \Leftrightarrow {t^2} + {\left( {2t - 2} \right)^2} + {\left( {2t + 3} \right)^2} = \frac{{25}}{2}\end{array}\)

\( \Leftrightarrow 9{t^2} + 4t + \frac{1}{2} = 0\).

Vì phương trình \(9{t^2} + 4t + \frac{1}{2} = 0\) vô nghiệm nên đường thẳng \(d\) không cắt mặt cầu \(\left( S \right)\) hay đường thẳng \(d\) nằm ngoài mặt cầu \(\left( S \right)\).

d) Đúng:

Gọi giao tuyến của mặt phẳng \(\left( P \right)\) và mặt cầu \(\left( S \right)\) là đường tròn \(\left( C \right)\) có bán kính \(r\).

Sử dụng công thức \({R^2} = {r^2} + {\left[ {d\left( {I\,,\,\left( P \right)} \right)} \right]^2} \Rightarrow r = \sqrt {{R^2} - {{\left[ {d\left( {I\,,\,\left( P \right)} \right)} \right]}^2}} \).

Ta có \(d\left( {I\,,\,\left( P \right)} \right) = \frac{{\left| {3.3 + 4.\frac{7}{2} - 8} \right|}}{{\sqrt {{3^2} + {4^2}} }} = 3\).

Do đó \(r = \sqrt {{R^2} - {{\left[ {d\left( {I\,,\,\left( P \right)} \right)} \right]}^2}}  = \sqrt {{{\left( {\frac{{5\sqrt 2 }}{2}} \right)}^2} - {3^2}}  = \frac{{\sqrt {14} }}{2}\).

Vậy mặt phẳng \(\left( P \right):\,\,3x + 4y - 8 = 0\) cắt mặt cầu \(\left( S \right)\) theo giao tuyến là một đường tròn đường kính \(\sqrt {14} \).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(Q\left( {1; - 2;2} \right)\).         
B. \(N\left( {1; - 1; - 1} \right)\).      
C. \(P\left( {2; - 1; - 1} \right)\).  
D. \(M\left( {1;1; - 1} \right)\).

Lời giải

Thay toạ độ các điểm \(Q,N,P,M\) vào phương trình mặt phẳng \(\left( \alpha  \right)\), thấy toạ độ điểm \(N\)thoả mãn.

Câu 2

A. \(5x + 2y - 3z - 17 = 0\).                                                                       

B. \(2x + 2y + z - 11 = 0\).

C. \(5x + 2y - 3z - 11 = 0\).                
D. \(2x + 2y + z - 17 = 0\).

Lời giải

Phương trình mặt phẳng \(\left( P \right)\) có dạng

\(5\left( {x - 2} \right) + 2\left( {y - 2} \right) - 3\left( {z - 1} \right) = 0\)\( \Leftrightarrow 5x + 2y - 3z - 11 = 0\)

Vậy \(\left( P \right):5x + 2y - 3z - 11 = 0\).

Câu 3

A. \(\left\{ \begin{array}{l}x = 3 - 1t\\y =  - 2 + 2t\\z = 1 - 2t\end{array} \right.\,,t \in \mathbb{R}\). 
B. \(\left\{ \begin{array}{l}x = 1 + 3t\\y =  - 2 - 2t\\z = 2 - t\end{array} \right.\,,t \in \mathbb{R}\).    
C. \(\left\{ \begin{array}{l}x =  - 3 - 1t\\y = 2 + 2t\\z =  - 1 - 2t\end{array} \right.\,,t \in \mathbb{R}\).   
D. \(\left\{ \begin{array}{l}x = 3 - 1t\\y = 2 - 2t\\z = 1 - 2t\end{array} \right.\,,t \in \mathbb{R}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(I\left( {1; - 2;3} \right);R = 5\).                                                        

B. \(I\left( { - 1;2; - 3} \right);R = 5\).

C. \(I\left( {1; - 2;3} \right);R = 25\).            
D. \(I\left( { - 1;2; - 3} \right);R = 25\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP