Câu hỏi:

09/02/2026 32 Lưu

Một nhóm học sinh có 20 học sinh, trong đó có 12 em thích học môn Toán, 10 em thích học môn Văn, 2 em không thích học cả hai môn Toán và Văn. Chọn ngẫu nhiên 1 học sinh, xác xuất để học sinh đó thích học môn Toán biết rằng học sinh đó thích học môn Văn là

A. \(\frac{1}{5}\).      
B. \(\frac{3}{{10}}\).
C . \(\frac{3}{5}\).      
D. \(\frac{2}{5}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi \(A\) là biến cố “học sinh đó thích học môn Toán”,

\(B\) là biến cố “học sinh đó thích học môn Văn”

Xác suất để học sinh được chọn thích học môn Toán, biết học sinh đó thích học môn Văn chính là \(P\left( {A|B} \right)\).

Ta có \(P\left( A \right) = \frac{{12}}{{20}} = \frac{3}{5}\), \(P\left( B \right) = \frac{{10}}{{20}} = \frac{1}{2}\), \(P\left( {\overline A \,\overline B } \right) = \frac{2}{{20}} = \frac{1}{{10}}\)

\(P\left( {A \cup B} \right) = 1 - P\left( {\overline A \,\overline B } \right) = 1 - \frac{1}{{10}} = \frac{9}{{10}}\)

Ta có \(P\left( {AB} \right) = P\left( A \right) + P\left( B \right) - P\left( {A \cup B} \right) = \frac{3}{5} + \frac{1}{2} - \frac{9}{{10}} = \frac{1}{5}\)

\(P\left( {A|B} \right) = \frac{{P\left( {AB} \right)}}{{P\left( B \right)}} = \frac{1}{5}:\frac{1}{2} = \frac{2}{5}\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Xét hai biến cố sau:

A: "Học sinh được chọn ra đạt điểm giỏi";

\(B\): "Học sinh được chọn ra là học sinh nam".

Khi đó, xác suất để học sinh được chọn ra đạt danh hiệu học sinh giỏi và là nam, chính là xác suất của \(A\) với điểu kiện \(B\).

\({\rm{P}}(A \cap B) = \frac{{80}}{{600}} = \frac{2}{{15}}{\rm{. }}\)

Do có 245 học sinh nam nên \({\rm{P}}(B) = \frac{{245}}{{600}} = \frac{{49}}{{120}}\). Vì thế, ta có;

\({\rm{P}}(A\mid B) = \frac{{{\rm{P}}(A \cap B)}}{{{\rm{P}}(B)}} = \frac{{\frac{2}{{15}}}}{{\frac{{49}}{{120}}}} = \frac{{16}}{{49}}.\)

Vậy xác suất để học sinh được chọn ra đạt danh hiệu học sinh giỏi và là nam bằng \(\frac{{16}}{{49}}\).

Lời giải

Gọi \(A\) là biến cố “Lần 1 Minh lấy được bi màu xanh”,

\(B\) là biến cố “Lần 2 Minh lấy được bi có màu xanh”

Khi đó \(AB\) là biến cố “Cả hai lần Minh lấy được bi màu xanh”. Ta có \(P\left( {AB} \right) = \frac{5}{7}\)

Gọi \(x\) là số kẹo ban đầu trong túi \(\left( {x > 0} \right)\)

Ta có \(P\left( A \right) = \frac{6}{n}\), \(P\left( {B|A} \right) = \frac{5}{{n - 1}}\).

Theo công thức nhân xác suất, ta có \(P\left( {AB} \right) = P\left( A \right).P\left( {B|A} \right)\)

Hay \(\frac{6}{n} \cdot \frac{5}{{n - 1}} = \frac{5}{7}\)\( \Rightarrow n = 7\).

Vậy số bi đỏ trong túi ban đầu là \(7 - 6 = 1\) bi

Câu 3

A. \(\frac{{69}}{{203}}\).    
B. \(\frac{{19}}{{135}}\).    
C. \(\frac{9}{{23}}\). 
D. \(\frac{{41}}{{105}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP