Bạn Tuấn hằng ngày ăn sáng bằng xôi hoặc bún. Nếu hôm nay bạn ăn sáng bằng xôi thì xác suất để hôm sau bạn ăn sáng bằng bún là \(0,7\). Xét một tuần mà thứ ba bạn ăn sáng bằng xôi. Biết xác suất để thứ năm tuần đó, bạn Tuấn ăn sáng bằng bún là \(0,63\). Hỏi nếu hôm nay bạn ăn sáng bằng bún thì xác suất để hôm sau bạn ăn sáng bằng xôi là
Câu hỏi trong đề: Đề kiểm tra Ôn tập chương 6 (có lời giải) !!
Quảng cáo
Trả lời:
Giả sử nếu hôm nay bạn ăn sáng bằng bún thì xác suất để hôm sau bạn ăn sáng bằng xôi là \(x\) \(\left( {x < 1} \right)\).
Gọi \(A\) là biến cố “Thứ tư, bạn Tuấn ăn sáng bằng bún”,
\(B\) là biến cố “Thứ năm, bạn Tuấn ăn sáng bằng bún”, khi đó \(P\left( B \right) = 0,63\)
Ta cần tính \(P\left( {\overline B \backslash A} \right)\)
Ta có thứ ba bạn Tuấn ăn sáng bằng xôi nên \(P\left( A \right) = 0,7\), \(P\left( {\overline A } \right) = 1 - 0,7 = 0,3\)
Vì nếu hôm nay bạn ăn sáng bằng bún thì xác suất để hôm sau bạn ăn sáng bằng xôi là \(x\) và ăn sáng bằng bún là \(1 - x\) hay \(P\left( {B|A} \right) = 1 - x\).
Ta có \(P\left( {B|\overline A } \right) = 0,7\)
Theo công thức xác suất toàn phần: \(P\left( B \right) = P\left( A \right).P\left( {B|A} \right) + P\left( {\overline A } \right).P\left( {B\backslash \overline A } \right)\)
\( \Rightarrow 0,63 = 0,7.\left( {1 - x} \right) + 0,3.0,7\)
\( \Rightarrow x = 0,4\)
Vậy nếu hôm nay bạn ăn sáng bằng bún thì xác suất để hôm sau bạn ăn sáng bằng xôi là \(0,4\).Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Gọi \(A\) là biến cố “học sinh đó thích học môn Toán”,
\(B\) là biến cố “học sinh đó thích học môn Văn”
Xác suất để học sinh được chọn thích học môn Toán, biết học sinh đó thích học môn Văn chính là \(P\left( {A|B} \right)\).
Ta có \(P\left( A \right) = \frac{{12}}{{20}} = \frac{3}{5}\), \(P\left( B \right) = \frac{{10}}{{20}} = \frac{1}{2}\), \(P\left( {\overline A \,\overline B } \right) = \frac{2}{{20}} = \frac{1}{{10}}\)
\(P\left( {A \cup B} \right) = 1 - P\left( {\overline A \,\overline B } \right) = 1 - \frac{1}{{10}} = \frac{9}{{10}}\)
Ta có \(P\left( {AB} \right) = P\left( A \right) + P\left( B \right) - P\left( {A \cup B} \right) = \frac{3}{5} + \frac{1}{2} - \frac{9}{{10}} = \frac{1}{5}\)
\(P\left( {A|B} \right) = \frac{{P\left( {AB} \right)}}{{P\left( B \right)}} = \frac{1}{5}:\frac{1}{2} = \frac{2}{5}\)Câu 2
Lời giải
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.