Câu hỏi:
13/07/2024 590Cho tam giác ABC. Cho biết chu vi và diện tích của tam giác ABC thứ tư là P và S. Tính chu vi và diện tích tam giác AMN.
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
* Cách vẽ:
- Kẻ tỉa Ax bất kì khác tia AB, AC
- Trên tia Ax, lấy hai điểm E và F sao cho AE = 2 (đơn vị dài), EF = 3 (đơn vị dài)
- Kẻ đường thẳng FB
- Từ E kẻ đường thẳng song song với FB Cắt AB tại M.
- Kẻ đường thẳng FC.
- Từ E kẻ đường thẳng song song với FC cắt AC tại N.
Ta có M, N là hai điểm cần vẽ.
* Chứng minh:
Gọi p' và S' là chu vi và diện tích của AMN.
Trong ABC, ta có: MN // BC
Suy ra: AMN đồng dạng ΔABC
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Tam giác ABC có hai đường cao là AD và BE (D thuộc BC và E thuộc AC). Chứng minh hai tam giác DEC và ABC là hai tam giác đồng dạng.
Câu 2:
Cho hình bình hành ABCD .Từ A kẻ AM vuông góc với BC,AN vuông góc CD (M thuộc BC và N thuộc CD). Chứng mình rằng tam giác MAN đồng dạng với tam giác ABC.
Câu 3:
Tứ giác ABCD có hai đường chéo AC và BD cắt nhau tại O, (ABD) = (ACD) . Gọi E là giao điểm của hai đường thẳng AD và BC. Chứng minh rằng: ẠOD đồng dạng BOC
Câu 4:
Giả sử AC là đường chéo lớn của hình bình hành ABCD. Từ C, vẽ đường thẳng vuông góc CE với đường thẳng AB, đường vuông góc CF với đường thẳng AD (E, F thuộc phần kéo dài của các cạnh AB và AD), Chứng minh rằng AB.AE + AD.AF =
Câu 5:
Tứ giác ABCD có hai góc vuông tại đỉnh A và C hai đường chéo AC và BD cắt nhau tại O, (BAO) = (BDC) .Chứng minh: BCO đồng dạng ADO
Câu 6:
Tam giác ABC có hai đường trung tuyến AK và CL cắt nhau tại O. Từ điểm P bất kì trên cạnh AC, vẽ các đường thẳng PE song song với AK, PF song song với CL (E thuộc BC, F thuộc AB).Các trung tuyến AK, CL cắt đoạn thẳng EF theo thứ tự tại M, N. Chứng minh rằng các đoạn thẳng FM, MN, NE bằng nhau
Câu 7:
Tam giác ABC có ba đường cao AD, BE, CF đồng quy tại H.Chứng minh rằng:AH.DH = BH.EH = CH.FH
về câu hỏi!