Câu hỏi:

13/07/2024 8,571 Lưu

Cho hình vuông ABCD. Gọi E, F theo thứ tự là trung điểm của AB, BC. Gọi M là giao điểm của CE và DF. Chứng minh rằng AM = AD.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Gọi K là trung điểm của DC, AK cắt DF tại N.

* Xét tứ giác AKCE, ta có: AB // CD hay AE // CK

AE = 1/2 AB (gt)

CK = 1/2 CD (theo cách vẽ)

AB = CD ( Vì ABCD là hình vuông)

Suy ra: AE = CK nên tứ giác AKCE là hình bình hành (vì có một cặp cạnh đối song song và bằng nhau) ⇒ AK// CE

DF ⊥ CE (chứng minh trên) ⇒ AK ⊥ DF hay AN ⊥ DM

* Trong DMC, ta có: DK = KC và KN // CM

Nên DN = MN (tính chất đường trung bình của tam giác)

Tam giác ADM có AN là đường cao đồng thời là đường trung tuyến

Suy ra: ADM cân tại A

Vậy AD = AM.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Vì ΔABC vuông cân tại A nên B = C = 450

Vì ΔBHE vuông tại H có B = 450 nên ΔBHE vuông cân tại H.

Suy ra HB = HE

Vì ΔCGF vuông tại G, có C = 450 nên ΔCGF vuông cân tại G

Suy ra GC = GF

Ta có: BH = HG = GC (gt)

Suy ra: HE = HG = GF

Vì EH // GF (hai đường thẳng cũng vuông góc với đường thắng thứ ba) nên tứ giác HEFG là hình bình hành (vì có một cặp cạnh đối song song bằng nhau);

Lại có (EHG) = 900 nên HEFG là hình chữ nhật.

Mà EH = HG (chứng minh trên).

Vậy HEFG là hình vuông.

Lời giải

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Xét ABF và DAE,ta có: AB = DA (gt)

(BAF) = (ADE) = 900

AF = DE (gt)

Suy ra: ΔABF = ΔDAE (c.g.c)

⇒ BF = AE và B1A1

Gọi H là giao điểm của AE và BF.

Ta có: (BAF) = A1+ A2900

Suy ra: B1A2 = 900

Trong ΔABH,ta có: (AHB) + B1A2 = 1800

⇒ ((AHB) ) = 1800 – (B1A2 ) = 1800 – 900 = 900

Vậy AE ⊥ BF

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP