Câu hỏi:

25/01/2021 20,331

Cho hai hàm số liên tục f(x) và g(x) có nguyên hàm lần lượt là F(x) và G(x) trên [0; 2]. Biết F(0) = 0, F(2) = 1, G(2) = 1 và 02F(x)g(x)dx = 3  . Tính tích phân hàm:  02G(x)f(x)dx

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn C.

Đặt u = G(x)dv = f(x)dxdu = G(x)'dx = g(x) dxv = f(x)dx = F(x)

Suy ra:

= G(2)F(2) – G(0)F(0) – 3 = 1 – 0 – 3 = -2.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn D.

Đặt t = 2x => dt = 2dx, Đổi cận x = 0 <=> t = 0, x = 1 <=> t = 2

I = 1402tf'(t)dt

Đặt u = t du = dtdv = f'(t) dt  v = f(t)

I = 14tft20  - 02ftdt = 14(2f2 - 0f0 -4 ) = 7

Lời giải

Chọn D.

Đặt u = x+1dv = f'(x) dxdu = dxv = f'(x)dx=fx

10 = 2f(1) – f(0) – I 10 = 2 – I I = -8.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP