Câu hỏi:

13/07/2024 2,080

Trong không gian Oxyz cho một vecto a tùy ý khác vecto 0. Gọi α, β, γ là ba góc tạo bởi ba vecto đơn vị ijk trên ba trục Ox, Oy, Oz và vecto a. Chứng minh rằng: cos2α+cos2β+cos2γ=1

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Gọi a0 là vecto đơn vị cùng hướng với vecto a

ta có Giải sách bài tập Toán 12 | Giải sbt Toán 12

Gọi OA0 = a0 và các điểm A1A2A3 theo thứ tự là hình chiếu vuông góc của điểm A0 trên các trục Ox, Oy, Oz.

Khi đó ta có:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Ta có:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

ta suy ra:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

hay

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vì OA0 = a0  mà |a0| = 1 nên ta có: cos2α+cos2β+cos2γ=1

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Trong không gian Oxyz, hãy tìm trên mặt phẳng (Oxz) một điểm M cách đều ba điểm A(1; 1; 1), B(-1; 1; 0), C(3; 1; -1).

Xem đáp án » 13/07/2024 31,505

Câu 2:

Cho hình tứ diện ABCD. Chứng minh rằng: AC+BD=AD+BC

Xem đáp án » 13/07/2024 20,320

Câu 3:

Trong không gian Oxyz hãy viết phương trình mặt cầu đi qua bốn điểm A(1; 0; 0), B(0; -2; 0), C(0; 0; 4) và gốc tọa độ O. Hãy xác định tâm và bán kính của mặt cầu đó.

Xem đáp án » 13/07/2024 16,011

Câu 4:

Cho hai bộ ba điểm: A = (1; 3; 1), B = (0; 1; 2), C = (0; 0; 1). Hỏi bộ nào có ba điểm thẳng hàng?

Xem đáp án » 13/07/2024 9,965

Câu 5:

Cho hình tứ diện ABCD. Chứng minh hệ thức: AB.CD+AC.DB+AD.BC=0

Xem đáp án » 13/07/2024 5,316

Câu 6:

Trong không gian Oxyz cho điểm M có tọa độ (x0y0z0). Tìm tọa độ hình chiếu vuông góc của điểm M trên các mặt phẳng tọa độ (Oxy), (Oyz), (Ozx).

Xem đáp án » 13/07/2024 3,767

Câu 7:

Trong không gian Oxyz cho tam giác ABC có tọa độ các đỉnh là:

A(a; 0; 0), B(0; b; 0), C(0; 0; c)

Chứng minh rằng tam giác ABC có ba góc nhọn.

Xem đáp án » 13/07/2024 3,045
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua