Câu hỏi:

13/07/2024 693 Lưu

Đố. Đố em biết vì sao khi a > 0 và phương trình ax2 + bx + c = 0 vô nghiệm thì ax2 + bx + c > 0 với mọi giá trị của x?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Giải bài 19 trang 49 SGK Toán 9 Tập 2 | Giải toán lớp 9

Ta có: a > 0 (gt), Giải bài 19 trang 49 SGK Toán 9 Tập 2 | Giải toán lớp 9 với mọi x, a, b ⇒ Giải bài 19 trang 49 SGK Toán 9 Tập 2 | Giải toán lớp 9

Phương trình ax2 + bx + c = 0 vô nghiệm nên

Giải bài 19 trang 49 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy ax2 + bx + c = Giải bài 19 trang 49 SGK Toán 9 Tập 2 | Giải toán lớp 9 với mọi x.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Phương trình bậc hai 4x2 + 4x + 1 = 0

Có a = 4; b’ = 2; c = 1; Δ = (b)2  ac = 22  4.1 = 0

Phương trình có nghiệm kép là:

Giải bài 17 trang 49 SGK Toán 9 Tập 2 | Giải toán lớp 9

b) Phương trình 13852x2  14x + 1 = 0

Có a = 13852; b’ = -7; c = 1;

Δ = (b)2  ac = (-7)2  13852.1 = -13803 < 0

Vậy phương trình vô nghiệm.

c) Phương trình bậc hai 5x2  6x + 1 = 0

Có: a = 5; b’ = -3; c = 1.; Δ = (b)2  ac = (-3)2  5.1 = 4 > 0

Phương trình có hai nghiệm phân biệt:

Giải bài 17 trang 49 SGK Toán 9 Tập 2 | Giải toán lớp 9

d) Phương trình bậc hai: Giải bài 17 trang 49 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 17 trang 49 SGK Toán 9 Tập 2 | Giải toán lớp 9

Phương trình có hai nghiệm phân biệt :

Giải bài 17 trang 49 SGK Toán 9 Tập 2 | Giải toán lớp 9

Kiến thức áp dụng

Phương trình ax2 + bx + c = 0 (a ≠ 0) có biệt thức Δ = b2 – 4ac.

+ Nếu Δ > 0, phương trình có hai nghiệm phân biệt Giải bài 15 trang 45 SGK Toán 9 Tập 2 | Giải toán lớp 9

+ Nếu Δ = 0, phương trình có nghiệm kép Giải bài 15 trang 45 SGK Toán 9 Tập 2 | Giải toán lớp 9 ;

+ Nếu Δ < 0, phương trình vô nghiệm.

Lời giải

a = 5;        b’ = 2;        c = -1;

Δ = (b')2 - ac = 22 - 5.(-1) = 9;        √(Δ') = 3

Nghiệm của phương trình:

Giải bài tập Toán 9 | Giải Toán lớp 9

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP