Câu hỏi:

19/08/2022 2,654

Cho hệ phương trình mxy=2m4xmy=m+6. Trong trường hợp hệ phương trình có nghiệm duy nhất (x; y), tìm hệ thức liên hệ giữa x, y không phụ thuộc vào m.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có

mxy=2m4xmy=m+6y=mx2m4xmmx2m=m+6y=mx2mxm24=2m2m6

Hệ phương trình có nghiệm duy nhất khi m240m2;2

Khi đó x=2m2m6m24=2m+3m2m2m+2=2m+3m+2

y=m.2m+3m+22m=mm+2x=2m+3m+2y=mm+2x=21m+2y=1+2m+22x=42m+2y=1+2m+22x + y = 3

vậy hệ thức không phụ thuộc vào m là 2x + y = 3

Đáp án: D

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có

x+2y=m+32x3y=m2x+4y=2m+62x3y=mx+2y=m+37y=m+6x=5m+97y=m+67

Hệ phương trình có nghiệm duy nhất (x; y) =5m+97;m+67  

Lại có x + y = −3 hay 5m+97+m+67=35m + 9 + m + 6 = −21

6m = −36m = −6

Vậy với m = −6 thì hệ phương trình có nghiệm duy nhất (x; y) thỏa mãn x + y = −3

Đáp án: A

Lời giải

Ta có 2x+y=5m1x2y=2

y=5m12xx25m12x=2y=5m12x5x=10m

x=2my=m1

Thay vào x2  2y2 = 2 ta có

x22y2=2(2m)22(m1)2 =22m2+4m=0m=0m=2    

Vậy m {−2; 0}

Đáp án: C

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP