Câu hỏi:

07/08/2020 401

Cho tứ diện ABCD có thể tích là V. Điểm M thay đổi trong tam giác BCD Các đường thẳng qua M và song song với AB,AC,AD lần lượt cắt các mặt phẳng ACD,ABD,ABC tại N;P;Q. Giá trị lớn nhất của thể tích khối đa diện MNPQ 

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án A

Giả sử tứ diện ABCD có AB;AC'AD đội một vuông góc VABCD=AB.AC.AD6

Khi đó tứ diện MNPQ có MN;MP;MQ đội một vuông góc VM.NPQ=MN.MP.MQ6

Ta chứng minh được MNAB+MPAC+MQAD=1 ( dựa vào định lý Thalet), khi đó

MN.MP.MQ=AB.AC.AD.MNAB.MPAC.MQADAB.AC.AD.MNAB+MPAC+MQAD327=AB.AC.AD27

Vậy VM.NPQ=MN.MP.MQ6127.AB.AC.AD6=V27Vmax=V27

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án D

Chú ý 4 cạnh khác nhau

C64cách chọn 4 màu khác nhau. Từ mỗi bộ 4 màu thì có 4!=24 cách tô màu khác nhau

C63cách chọn 3 màu khác nhau. Từ mỗi bộ 3 màu, có 4.3=12cách tô

Có  C62cách chọn 2 màu khác nhau khi đó có: 2.1=2 cách tô 

Tổng cộng: 24.C64+4.3C63+2.C62=630 cách

Lời giải

Đáp án B

Ta có 2sinx1=0sinx=12x=π6+k2πx=5π6+k2πk

Mặt khác 0x5π2 suy ra x=π6;13π6;5π6. Vậy phương trình có 3 nghiệm

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP