Cho hai đường thẳng . Khẳng định nào sau đây là đúng?
A.Hai đường thẳng trùng nhau
B.Hai đường thẳng song song
C.Hai đường thẳng cắt nhau
D.Hai đường thẳng vuông góc với nhau
Quảng cáo
Trả lời:

Ta có:
Do đó, hai đường thẳng đã cho cắt nhau.
Chú ý. Ta có thể kiểm tra hai đường thẳng đã cho không vuông góc.
ĐÁP ÁN C
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Các vectơ khác vectơ – không, cùng phương (tọa độ tỉ lệ) với thì đều là VTCP của đường thẳng ∆.
Ta có:
Do đó vectơ ở phương án D không phải là VTCP của .
Câu 2
A.3/2
B.9/2
C.27/2
D.13
Lời giải
Ta có:
Phương trình BC : Qua B (2; -4) và nhận VTCP nên có VTPT :
7( x -2) – 2 ( y + 4) = 0 hay 7x - 2y - 22 = 0
Khoảng cách từ A đến BC là:
Diện tích tam giác ABC là:
ĐÁP ÁN C.
Câu 3
A.m = 0
B.m = - 4
C.m = 4
D.không tồn tại giá trị m thỏa mãn
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A.x – 2y + 5 = 0
B.x + 2y – 11 = 0
C.x + 2y – 5 = 0
D.x – y = 0
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A.3(x + 1) + 4(y – 2) = 0
B. 3(x – 1) + 4(y + 2) = 0
C. (x – 3) – 2(y – 4) = 0
D.(x + 3) – 2(y + 4) = 0
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A.y = 4(x – 2) + 3
B. 4x – y – 5 = 0
C.
D.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.