Câu hỏi:

14/08/2020 412

Cho hai điểm A(-4; -1), B(-2; 1). Điểm C trên đường thẳng ∆: x – 2y + 3 = 0 sao cho diện tích tam giác ABC bằng 40 (đvdt). Khi đó tung độ của điểm C là

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

ĐÁP ÁN B.

Do C nằm trên đường thẳng ∆: x – 2y + 3 = 0 nên ta gọi tọa độ C là C(2y – 3; y).

Mà AB=  (2+4)2+​  (1+1)2=22

 Phương trình AB: qua A( - 4; -1) và nhận VTCP AB  (2;2) nên có VTPT là:  n  (1;  1):

1(  x+ 4) – 1 ( y + 1) = 0  hay x – y + 3 = 0

d(​​​C;   AB)=​​  2y3y+32=y2

 Theo đầu bài ta có:

40=S=12.AB.d(C;​​   AB)=12.  22.y2y  =40  y=  ±40

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Các vectơ khác vectơ – không, cùng phương (tọa độ tỉ lệ) với u thì đều là VTCP của đường thẳng ∆.

Ta có: 33=55;    36=  510;   31=  553;   35  53

Do đó vectơ ở phương án D không phải là VTCP của .

Lời giải

Ta có: BC=  (42)2+(3+4)2=53

 Phương trình BC : Qua B  (2; -4) và nhận VTCP BC(2;  7)nên có VTPT n(​ 7;   2):
  7( x -2) – 2 ( y +  4) = 0 hay 7x -  2y - 22 = 0

Khoảng cách từ A đến  BC là:

d(  A;  BC)=7.(1)2.(1)2272+(2)2=2753

Diện tích tam giác ABC là:  S=12BC.d(A;  BC)=12.  53.  2753=272

ĐÁP ÁN C.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Phương trình tổng quát của ∆ đi qua điểm M(3;4) và có vectơ pháp tuyến n=1;2 là: 

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Cho α là góc tạo bởi hai đường thẳng d1: a1x+b1y+c1=0 và d2: a2x+b2y+c2=0. Khẳng định nào sau đây là đúng?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Phương trình tham số của đường thẳng ∆ đi qua điểm M(2; 3) và có hệ số góc k = 4 là:

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay