Câu hỏi:
03/11/2020 236Cho hình chóp S. ABCD có đáy ABCD là hình vuông cạnh bằng 1. Tam giác SAB đều và nằm trong mặt phẳng vuông góc với mặt đáy (ABCD). Tính khoảng cách từ B đến (SCD).
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình lăng trụ đều ABC. A’B’C’ có cạnh đáy bằng 2a, cạnh bên bằng a. Tính góc giữa hai mặt phẳng (AB’C’) và (A’B’C’).
Câu 2:
Cho tứ diện đều ABCD cạnh a. Tính cosin góc giữa hai đường thẳng AB và CI với I là trung điểm của AD
Câu 3:
Cho hình chóp S. ABCD có tất cả các cạnh bên và cạnh đáy đều bằng a và ABCD là hình vuông. Gọi M là trung điểm của CD. Giá trị bằng
Câu 4:
Cho tứ diện đều ABCD, M là trung điểm của cạnh BC. Khi đó cos (AB, DM) bằng:
Câu 5:
Giả sử α là góc của hai mặt của một tứ diện đều có cạnh bằnga. Khẳng định đúng là
Câu 6:
Cho hình chóp tứ giác đều có cạnh đáy bằng a và chiều cao bằng . Tính số đo của góc giữa mặt bên và mặt đáy
Câu 7:
Cho hình chóp S. ABCD có đáy ABCD là hình vuông. Mặt bên SAB là tam giác đều có đường cao SH vuông góc với (ABCD). Gọi α là góc giữa BD và (SAD). Tính
về câu hỏi!