Câu hỏi:

12/07/2024 685 Lưu

Đội văn nghệ của một trường có 48 nam và 72 nữ. Muốn phục vụ tại nhiều địa điểm, đội dự định sẽ chia thành các tổ gồm cả nam và nữ. Số nam và nữ được chia đều. Có thể chia được nhiều nhất thành bao nhiêu tổ? Khi đó mỗi tổ có bao nhiêu nam, bao nhiêu nữ?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Gọi số tổ là a (aN*)

Khi đó ta có: 48a; 72a và a lớn nhất.

Do đó a là ƯCLN(48;72).

Tính được: a = 24.

Vậy, có thể chia nhiều nhất 24 tổ, mỗi tổ gồm 48 : 24 = 2 (nam) và 72 : 24 = 3 (nữ).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a, Đặt d = ƯCLN(2n+3;4n+8)

=> 2(2n+3)d; (4n+8)d

=> [(4n+8) – (4n+6)]d

=> 2d => d{1;2}

Mặt khác 2n+3 là số lẻ nên d ≠ 2.

Vậy d = 1. Hay với mọi số tự nhiên n thì các số 2n+3 và 4n+8 nguyên tố cùng nhau

b, Đặt d = ƯCLN(2n+5;3n+7)

=> 3(2n+5)d; 2(3n+7)d

=> [(6n+15) – (6n+14)]d

=> 1d => d = 1

Vậy d = 1. Hay với mọi số tự nhiên n thì các số 2n+5 và 3n+7 nguyên tố cùng nhau.

c, Đặt d = ƯCLN(7n+10;5n+7)

=> 5(7n+10)d; 7(5n+7)d

=> [(35n+50) – (35n+49)]d

=> 1d => d = 1

Vậy d = 1. Hay với mọi số tự nhiên n thì các số 7n+10 và 5n+7 nguyên tố cùng nhau

Lời giải

a, Gọi d = ƯCLN(7n+13;2n+4).

=>2(7n+13)d; 7(2n+4)d

=> [(14n+28) – (14n+6)]d

=> 2d => d = {1;2}

Nếu d = 2 thì (7n+3)2 => [7(n+1)+6]2 => 7(n+1)2

Mà ƯCLN(7,2) = 1 nên (n+1)2 => n = 2k–1

Vậy để 7n+13 và 2n+4 nguyên tố cùng nhau thì  2k–1

b, Gọi d =  ƯCLN(4n+3;2n+3)

=> (4n+3)d; 2(2n+3)d

=> [(4n+6) – (4n+3)]d

=> 3d => d = {1;3}

Nếu d = 3 thì (4n+3)3 => [3(n+1)+n]3 => n3 => n = 3k

Vậy để 4n+3 và 2n+3 nguyên tố cùng nhau thì n3k

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP