Câu hỏi:

13/07/2024 1,774

Cho tam giác ABC, có A^ = 60°, trực tâm H. Gọi M là điểm đối xứng với H qua BC.

a) Chứng minh ∆BHC = ∆BMC.

b) Tính BMC^

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Chứng minh được DBHC = DBMC (c.c.c).

b) Gọi {C'} = CH Ç AB. Sử dụng định lý tổng 4 góc trong tứ giác AB'HC' ta tính được B'HC'^=1200 

Ta có B'HC'^=BHC^ (đối đỉnh) và BCH^=BMC^  (doBHC=BMC)  BMC^=1200

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Sử dụng tính chất đối xứng trục kết hợp với chứng minh tam giác bằng nhau ta có được E1^=M1^ và F1^=M2^ mà E1^=F1^(Tính chất tam giác cân)

M1^=M2^ Þ ĐPCM.

b) Sử dụng tính chất đối xứng trục ta có PM = PE; QM = QF. Theo bất đẳng thức trong tam giacs MPQ, ta có:

PDMPQ = MP + PQ + QM= (PE + PQ) + QF ≥ EQ + QF ≥ EF.

Do M cố định, tam giác ABC cố định Þ E, F, I, K cố định. Vậy (PDMPQ)min = EF Û P º I, Q º K

Lời giải

a) Đoạn thẳng đối xứng với AB, AC qua đường thẳng d lần lượt là KC, KB.

b) ta có AK//BC (vì cùng vuông góc với d) và AC = KB (tính chất đối xứng trục) Þ tứ giác AKCB là hình thang cân

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP