Câu hỏi:

13/07/2024 22,097

Cho tam giác ABC vuông cân tại C. Trên các cạnh AC, BC lấy lần lượt các điểm P, Q sao cho AP = CQ. Từ điểm P vẽ PM song song với BC (M Î AB). Chứng minh tứ giác PCQM là hình chữ nhật.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chứng minh: PM = CQ

Mà PM//CQ

Þ PCQM là hình bình hành

Lại có: C^=900 

Þ PCQM là hình chữ nhật

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

) HS tự chứng minh AMBQ là hình chữ nhật (ahi đường chéo cắt nhau tại trung điểm mỗi đường và bằng nhau)

b) Sử dụng tính chất trực tâm tam giác.

c) Sử dụng tính chất đường trung tuyến ứng với cạnh huyền của tam giác vuông để chứng minh

PI=PQ=12AB.

Lời giải

a) FHA^=HAK^=AKF^=900

Þ AHFK là hình chữ nhật.

b) Gọi là giao điểm của AC và BD. Chứng minh OE là đường trung bình của DACF

Þ AF//OE

Þ AF/BD

c) Gọi I là giao điểm của AF và HK.

Chứng minh

H1^=A^1(H1^=A2^=B1^=A1^)KH//AC mà KH đi qua trung điểm I của AF Þ KH đi qua trung điểm của FC.

Mà E là trung điểm của FC Þ K, H, E thẳng hàng

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP