Câu hỏi:

13/07/2024 29,375

Cho hình chữ nhật ABCD. Nối C với một điểm E bất kỳ trên đường chéo BD. Trên tia đối của tia EC lấy điểm F sao cho EF = EC. Vẽ FH và FK lần lượt vuông góc với đường thẳng AB và AD tại h và K. Chứng minh rằng:

a) Tứ giác AHFK là hình chữ nhật;

b) AF song song với BD;

c) Ba điểm E, H, K thẳng hàng

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) FHA^=HAK^=AKF^=900

Þ AHFK là hình chữ nhật.

b) Gọi là giao điểm của AC và BD. Chứng minh OE là đường trung bình của DACF

Þ AF//OE

Þ AF/BD

c) Gọi I là giao điểm của AF và HK.

Chứng minh

H1^=A^1(H1^=A2^=B1^=A1^)KH//AC mà KH đi qua trung điểm I của AF Þ KH đi qua trung điểm của FC.

Mà E là trung điểm của FC Þ K, H, E thẳng hàng

n

nckds

tại sao KH đi qua trung điểm FC vậy?

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

) HS tự chứng minh AMBQ là hình chữ nhật (ahi đường chéo cắt nhau tại trung điểm mỗi đường và bằng nhau)

b) Sử dụng tính chất trực tâm tam giác.

c) Sử dụng tính chất đường trung tuyến ứng với cạnh huyền của tam giác vuông để chứng minh

PI=PQ=12AB.

Lời giải

a) Chứng minh: AHCE là hình bình hành; AH CE 

Þ AHCE là hình chữ nhật.

b) Chứng minh G, K lần lượt là các trọng tâm của tam giác AHC, AEC và sử dụng tính chất 2 đường chéo của hình chữ nhật.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP