Câu hỏi:

13/07/2024 21,987

Cho tam giác ABC, đường cao AH. Gọi I là trung điểm của AC. Lấy E là điểm đối xứng với H qua I. Gọi M, N lần lượt là trung điểm của HC, CE. Các đường thẳng AM, AN cắt HE tại G và K.

a) Chứng minh tứ giác AHCE là hình chữ nhật.

b) Chứng minh HG = GK = KE.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Chứng minh: AHCE là hình bình hành; AH CE 

Þ AHCE là hình chữ nhật.

b) Chứng minh G, K lần lượt là các trọng tâm của tam giác AHC, AEC và sử dụng tính chất 2 đường chéo của hình chữ nhật.

ホアン・タイン・ダット

ホアン・タイン・ダット

Tuổi lồn

ホアン・タイン・ダット

ホアン・タイン・ダット

Địt cụ xóa comment của bố ah

ホアン・タイン・ダット

ホアン・タイン・ダット

Như đầu buồi giải thì giải cụ nó ra còn để phương pháp con mẹ mày

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

) HS tự chứng minh AMBQ là hình chữ nhật (ahi đường chéo cắt nhau tại trung điểm mỗi đường và bằng nhau)

b) Sử dụng tính chất trực tâm tam giác.

c) Sử dụng tính chất đường trung tuyến ứng với cạnh huyền của tam giác vuông để chứng minh

PI=PQ=12AB.

Lời giải

a) FHA^=HAK^=AKF^=900

Þ AHFK là hình chữ nhật.

b) Gọi là giao điểm của AC và BD. Chứng minh OE là đường trung bình của DACF

Þ AF//OE

Þ AF/BD

c) Gọi I là giao điểm của AF và HK.

Chứng minh

H1^=A^1(H1^=A2^=B1^=A1^)KH//AC mà KH đi qua trung điểm I của AF Þ KH đi qua trung điểm của FC.

Mà E là trung điểm của FC Þ K, H, E thẳng hàng

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP