Câu hỏi:
12/07/2024 1,776Cho hình vuông ABCD. Trên cạnh BC lấy điểm E, trên tia đối của tia CD lấy điểm F sao cho CE = CF. Gọi M là giao điểm của hai đường thẳng DE và BF. Tìm quỹ tích của điểm M khi E di động trên cạnh BC
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Chứng minh được:
=> nên M thuộc đường tròn đường kính BD. Mà E Î BC nên quỹ tích của điểm M là là cung của đường tròn đường kính BD
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Cho tam giác ABCD vuông tại A, phân giác BF. Từ điểm I nằm giữa B và F vẽ đường thẳng song song với AC cắt AB, BC lần lượt tại M và N. Vẽ đường trong ngoại tiếp tam giác BIN cắt AI tại D. Hai đường thẳng DN và BF cắt nhau tại E. Chứng minh:
a, Bốn điểm A, B, D, E cùng thuộc một đường tròn
b, Năm điểm A, B, C, D, E cùng thuộc một đường tròn. Từ đó suy ra BE vuông góc với CE
về câu hỏi!