Câu hỏi:

12/07/2024 1,473

Cho tam giác ABC vuông tại A, đường cao AH. Kẻ HE vuông góc với AB tại E, Kẻ HF vuông góc với AC tại F. Chứng minh tứ giác BEFC nội tiếp

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Gợi ý: AFE^=AHE^ (tính chất hình chữ nhật và AHE^=ABH^ (cùng phụ BHE^)

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho đường tròn (O; R) và dây CD cố định. Điểm M thuộc tia đối của tia CD. Qua M kẻ hai tiếp tuyên MA, MB tới đường tròn (A thuộc cung lớn CD). Gọi I là trung điểm CD. Nối BI cắt đường tròn tại E (E khác B). Nối OM cắt AB tại H

a, Chứng minh AE song song CD

b, Tìm vị trí của M để MA ^ MB

c, Chứng minh HB là phân giác của CHD

Xem đáp án » 12/07/2024 4,114

Câu 2:

Cho hình vuông ABCD. E di động trên đoạn CD (E  khác C, D). Tia AE cắt đường thẳng BC tại F, tia Ax vuông góc vói AE tại A cắt đường thẳng DC tại K. Chứng minh:

a, CAF^=CKF^

b, Tam giác KAF vuông cân

c, Đường thẳng BD đi qua trung điểm I của KF

d, Tứ giác IMCF nội tiếp với M là giao điểm của BDAE

Xem đáp án » 12/07/2024 2,797

Câu 3:

Cho đường tròn (O) đường kính AB. Trên đoạn thẳng OB lấy điểm H bất kì (H không trùng O, B). Trên đường thẳng vuông góc với OB tại H, lấy một điểm M ở ngoài đường tròn; MA và MB thứ tự cắt đường tròn (O) tại C và D. Gọi I là giao điểm của AD và BC. Chứng minh MCID và MCHB là tứ giác nội tiếp

Xem đáp án » 12/07/2024 2,512

Câu 4:

Cho đường tròn tâm O bán kính R, hai điểm c và D thuộc đường tròn, B là điểm chính giữa của cung nhỏ CD. Kẻ đường kính BA; trên tia đối của tia AB lấy điểm S. Nối S với cắt (O) tại M, MD cắt AB tại K, MB cắt AC tại H. Chứng minh:

a, BMD^=BAC^Từ đó suy ra tứ giác AMHK nội tiếp

b, HK song song CD

Xem đáp án » 12/07/2024 2,470

Câu 5:

Cho tam giác ABC có ba góc nhọn nội tiếp (O), M là điểm thuộc cung nhỏ AC. Vẽ MH vuông góc với BC tại H, MI vuông góc AC tại I

a, Chứng minh IHM^=ICM^

b, Đường thẳng HI cắt đường thẳng AB tại K. Chứng minh MK vuông góc vói BK

c, Chứng minh tam giác MIH đồng dạng vói tam giác MAB

d, Gọi E là trung điểm của IH và F là trung điểm AB. Chứng minh tứ giác KMEF nội tiếp từ đó suy ra ME vuông góc vói EF 

Xem đáp án » 12/07/2024 2,432

Câu 6:

Cho điểm C nằm trên nửa đường tròn (O) vói đường kính AB sao cho cung AC lớn hơn cung BC (C ≠ B). Đường thẳng vuông góc vói AB tại O cắt dây AC tại D. Chứng minh tứ giác BCDO nội tiếp

Xem đáp án » 12/07/2024 2,383

Câu 7:

Cho tam giác ABC vuông tại A và điểm M thuộc cạnh AC. Vẽ đường tròn tâm O đường kính MC cắt BC tại E. Nối BM cắt đường tròn (O) tại N, AN cắt đường tròn (O) tại D. Lấy I đối xứng với M qua A, K đối xứng với M qua E

a, Chứng minh BANC là tứ giác nội tiếp

b, Chứng minh CA là phân giác của BCD^

c, Chứng minh ABED là hình thang

d, Tìm vị trí M để đường tròn ngoại tiếp tam giác BIK có bán kính nhỏ nhất 

Xem đáp án » 12/07/2024 2,362
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua