Câu hỏi:

13/07/2024 729

Cho P=1a1+3a+5aaaa+1a+124a(a>0,a1)

a) Rút gọn P

b) Đặt Q=(aa+1)P. Chứng minh Q > 1

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

Đề toán-lý-hóa Đề văn-sử-địa Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Với a > 0 và a ≠ 1 ta có:

P=a1(a1)(a1)+3a+5(a1)(a1).(a+2a+1)4a4a=4a+4(a1)2(a+1).a2a+14a=4(a1)2.(a1)24a=1a

b, Có Q=aa+1a

Xét Q1=a2a+1a=(a1)2a

Vì (a1)2>0,a>0,a>0,a1Q1>0Q>1

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho phương trình x22(m+1)x+m2=0  (1). Tìm m để phương trình có 2 nghiệm x1; x2 thỏa mãn (x1m)2+x2=m+2 

Xem đáp án » 13/07/2024 15,710

Câu 2:

Cho tam giác ABC nhọn (AB < AC) nội tiếp đường tròn (O;R). Gọi H là trực tâm của tam giác ABC. Gọi M là trung điểm của BC

a) Chứng minh AH = 2OM

Xem đáp án » 13/07/2024 8,307

Câu 3:

Giải hệ phương trình 1xxy=x2+xy2y2(1)x+3y1+x2+3x=3(2)

Xem đáp án » 13/07/2024 3,412

Câu 4:

Cho tam giác ABC nhọn (AB < AC) nội tiếp đường tròn (O;R). Gọi H là trực tâm của tam giác ABC. Gọi M là trung điểm của BC

c) Gọi N là giao điểm của AH với đường tròn (O) (N khác A). Gọi D là điểm bất kì trên cung nhỏ NC của đường tròn tâm (O) (D khác N và C). Gọi E là điểm đối xứng với D qua AC, K là giao điểm của AC và HE. Chứng minh rằng ACH = ADK.

Xem đáp án » 11/07/2024 901

Câu 5:

Cho a, b là 2 số thực dương. Chứng minh rằng (1+a)(1+b)1+ab

Xem đáp án » 11/07/2024 876

Câu 6:

Cho tam giác ABC nhọn (AB < AC) nội tiếp đường tròn (O;R). Gọi H là trực tâm của tam giác ABC. Gọi M là trung điểm của BC

b) Dựng hình bình hành AHIO. Gọi J là tâm đường tròn ngoại tiếp tam giác OBC. Chứng minh rằng OI. OJ = R2

Xem đáp án » 13/07/2024 834

Câu 7:

Giải phương trình trên tập số nguyên x2015=y(y+1)(y+2)(y+3)+1 (1)

Xem đáp án » 13/07/2024 750
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua