Câu hỏi:

13/07/2024 2,524

Cho đường thẳng (d): mx + 2y = 4

1. Vẽ đường thẳng khi m = 2

2. Tìm m để đường thẳng (d)

a) Cắt hai trục tọa độ tại hai điểm phân biệt

b) Song song với Ox

c) Song song với Oy

d) Song song với đường thẳng Δ:x+y=6

e) Có hướng đi lên

f) Có hướng đi xuống

3. Chứng minh rằng khi m thay đổi, đường thẳng (d) luôn đi qua một điểm cố định

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

1. Với m = 2, ta có 2x+2y=4y=x+2

Với x=0y=2, với y=0x=4

Đồ thị hàm số y = -x + 4 là một đường thẳng đi qua (0;4) và (4;0) 

2. Xét phương trình y=m2x+2. Ta có

a) (d) cắt hai trục tọa độ tại 2 điểm phân biệt m20m0

b) (d) song song với Ox m2=0m=0

c) (d) song song với Oy m02m=0 (vô nghiệm)

Vậy không tồn tại m để (d) // Oy

d) (d) // Δm2=1m=2

e) (d) có hướng đi lên m2>0m<0

f) (d) có hướng đi xuống m2<0m>0

3. Giả sử là điểm cố định mà đường thẳng luôn đi qua. Khi đó ta có:

mx0+2y0=4mx0=02y04=0x0=0y0=2

Vậy M (0;2) là điểm cố định mà đường thẳng luôn đi qua khi m thay đổi.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a. Xét phương trình 5x + 4y = 8

- Với cặp số (-2;1). Ta có 5(-2) + 4.1 = -6 8.

Do đó cặp số (-2;1) không là nghiệm của phương trình.

- Với cặp số (0;2). Ta có 0 + 4.2 = 8.

Do đó cặp số (0;2) là nghiệm của phương trình.

- Với cặp số (-1;0). Ta có (-1) + 4.0 = -5 8.

Do đó cặp số (-1;0) không là nghiệm của phương trình.

- Với cặp số (1,5;3). Ta có 1,5 + 4.3 = 19,5 8.

Do đó cặp số (1,5;3) không là nghiệm của phương trình.

- Với cặp số (4;-3). Ta có 4 + 4.(-3) = 8.

Do đó cặp số (4;-3) là nghiệm của phương trình.

b. Xét phương trình 3x + 5y = -3

- Các cặp (-1;0); (4;-3) là nghiệm của phương trình.

- Các cặp (-2;1); (0;2); (1,5;3) không là nghiệm của phương trình.

Lời giải

a) Biến đổi phương trình về dạng x = 3y + 4
Nhận xét rằng, với mọi yZ, ta luôn có x = 3y + 4Z
Vậy phương trình có vô số nghiệm nguyên thỏa mãn (3y +4;y) với yZ
b) Biến đổi phương trình về dạng y = -3x + 6
Nhận xét rằng, với mọi xZ, ta luôn có y = -3x + 6Z
Vậy phương trình có vô số nghiệm nguyên thỏa mãn (x;-3x + 6) với xZ
c) Biến đổi phương trình về dạng 4x = 5y + 8 <=> x = y + 2 + y4 (1)

Đặt k = y4, kZ <=> y = 4k, kZ
Thay y = 4k vào (1) ta được x = 4k + 2 + k = 5k + 2Z, kZ
Vậy phương trình có vô số nghiệm nguyên thỏa mãn (5k +2;4k) với kZ

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay