Câu hỏi:
12/07/2024 8,2291. Chứng minh rằng đường thẳng nối trung điểm hai đường chéo và các đoạn thẳng nối trung điểm các cạnh đối của tứ giác gặp nhau tại một điểm.
2. Dùng định lí trên chứng tỏ rằng nếu một tứ giác các đường thẳng nối trung điểm các cạnh đối đi qua giao điểm hai đường chéo thì tứ giác đó là hình bình hành.
Câu hỏi trong đề: Các dạng bài tập Toán 8 Chương 1 : Tứ giác có đáp án !!
Quảng cáo
Trả lời:
1. Gọi E, F, G, H là trung điểm của AB, BC, CD, DA; I, K là trung điểm của BD, AC.
Tứ giác EFGH có EF//GH(//AC), nên EFGH là hình bình hành. Chứng minh tương tự EIGK là hình bình hành, do đó FH và IK cùng đi qua trung điểm cùng EG.
2. Gọi O là giao điểm của hai đường chéo và M là trung điểm của IK. Nếu EG, FH cắt nhau tại O thì theo câu 1), M trùng với O, do đó I và K trùng O. Tứ giác ABCD có O là trung điểm của hai đường chéo nên là hình bình hành.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Tứ giác ADKE có hai đường chéo cắt nhau tại trung điểm của mỗi đường nên ADKE là hình bình hành.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.