Cho tam giác ABC có . Trong góc A vẽ các đoạn thẳng AD, AE sao cho AD vuông góc và bằng AB, AE vuông góc và bằng AC. Gọi M là trung điểm của DE. Chứng minh rằng AM vuông góc với BC.
Câu hỏi trong đề: Các dạng bài tập Toán 8 Chương 1 : Tứ giác có đáp án !!
Quảng cáo
Trả lời:
 Giải bởi Vietjack
                                        Giải bởi Vietjack
                                    Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Tứ giác ADKE có hai đường chéo cắt nhau tại trung điểm của mỗi đường nên ADKE là hình bình hành.
Lời giải
1. Gọi E, F, G, H là trung điểm của AB, BC, CD, DA; I, K là trung điểm của BD, AC.
Tứ giác EFGH có EF//GH(//AC), nên EFGH là hình bình hành. Chứng minh tương tự EIGK là hình bình hành, do đó FH và IK cùng đi qua trung điểm cùng EG.
2. Gọi O là giao điểm của hai đường chéo và M là trung điểm của IK. Nếu EG, FH cắt nhau tại O thì theo câu 1), M trùng với O, do đó I và K trùng O. Tứ giác ABCD có O là trung điểm của hai đường chéo nên là hình bình hành.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
 Nhắn tin Zalo
 Nhắn tin Zalo