Câu hỏi:

19/09/2022 2,376

Số nguyên dương n thỏa mãn

Cn0.Cn+1n+Cn1.Cn+1n-1+Cn2.Cn+1n-2+...+Cnn-1Cn+1n+Cnn.Cn+10=1716 

là:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án cần chọn là: D

Ta có: 1+x2n+1=C2n+10+C2n+11.x+C2n+12x2+...+C2n+12n.x2n+C2n+12n+1.x2n+1(1)

Mặt khác:

(1+x)n=Cn0+Cn1x+Cn2x2+...+Cnn-1xn-1+Cnnxn(1+x)n+1=Cn+10+Cn+11x+Cn+1xx2+...+Cn+1n-1xn-1+Cn+1nxn+Cn+1n+1xn+1

Suy ra:

(1+x)n.(1+x)n+1=Cn0+Cn1x+Cn2.x2+...+Cnnxn.Cn+10+Cn+11x+...+Cn+1n+1xn+1(2)

Từ (1) và (2), đồng nhất hệ số của xn ta được:

Cn0.Cn+1n+Cn1.Cn+1n-1+...+Cnn-1.Cn+1n+Cnn.Cn+10=C2n+1n

Với n=9 ta có: C2n+1n=C199=92378.

Với n=8 ta có: C2n+1n=C178=24310.

Với n=7 ta có: C2n+1n=C157=6435.

Với n=6 ta có: C2n+1n=C136=1716.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án cần chọn là: C

C2n+10+C2n+12+C2n+14+...+C2n+12n=1024.2C2n+10+C2n+12+C2n+14+...+C2n+12n=2.1024

C2n+10+C2n+12+C2n+14+...+C2n+12n+C2n+10+C2n+12+C2n+14+...+C2n+12n=2.1024(*)

Cnk=Cnn-kC2n+10=C2n+12n+1C2n+11=C2n+12n...

C2n+10+C2n+12+C2n+14+...+C2n+12n=C2n+12n+1+...+C2n+11

(Nói cách khác: Tổng các C có chỉ số chẵn= Tổng các C có chỉ số lẻ)

(*)C2n+12n+1+...+C2n+11+(C2n+10+C2n+12+C2n+14+...+C2n+12n)=2.1024C2n+10+C2n+11+C2n+12+...+C2n+12n+C2n+12n+1=2048(1+1)2n+1=204822n+1=20242n+1=11n=5

+) Số hạng tổng quát của khai triển: 2-3x10 là:Tk+1=C10k.210-k.(-3)k.xk

Số hạng chứa x5x5=xkk=5

Hệ số của số hạng chứa x5 là C105.25.(-3)5=-1959552.

Câu 2

Rút gọn tổng sau: S=Cn1+2Cn2+3Cn3+...+nCnn ta được:

Lời giải

Đáp án cần chọn là: C

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Tính tổng S=1.C20181+2.C20182+3.C20183+...+2018C20182018.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay