Câu hỏi:
19/09/2022 23,592Gieo một con xúc sắc cân đối và đồng chất 5 lần liên tiếp. Tính xác suất để tổng số chấm ở hai lần gieo đầu bằng số chấm ở lần gieo thứ ba.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án cần chọn là: B
Ta có: n(Ω)=
Bộ kết quả của ba lần gieo đầu thỏa mãn yêu cầu là:
(1;1;2),(1;2;3),(1;3;4),(1;4;5),(1;5;6),(2;1;3),(2;2;4),(2;3;5),(2;4;6),(3;1;4),(3;2;5),(3;3;6),(4;1;5),(4;2;6),(5;1;6)
Hai lần gieo sau mỗi lần gieo có 6 khả năng xảy ra nên n(A)=15.6.6
VậyP(A)=.
Chú ý
Một số em có thể sẽ chọn nhầm đáp án D vì chỉ liệt kê ra 15 khả năng có thể xảy ra của A mà quên mất hai lần gieo cuối là sai.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Gieo một con xúc xắc cân đối đồng chất 2 lần, tính xác suất để biến cố có tích 2 lần số chấm khi gieo xúc xắc là một số chẵn.
Câu 2:
Một chiếc hộp đựng 7 viên bi màu xanh, 6 viên bi màu đen, 5 viên bi màu đỏ, 4 viên bi màu trắng. Chọn ngẫu nhiên ra 4 viên bi, tính xác suất để lấy được ít nhất 2 viên bi cùng màu.
Câu 3:
Một hộp đựng 8 quả cầu trắng, 12 quả cầu đen. Lần thứ nhất lấy ngẫu nhiên 1 quả cầu trong hộp, lần thứ hai lấy ngẫu nhiên 1 quả cầu trong các quả cầu còn lại. Tính xác suất để kết quả của hai lần lấy được 2 quả cầu cùng màu.
Câu 4:
Có 5 nam, 5 nữ xếp thành một hàng dọc. Tính xác suất để nam, nữ đứng xen kẽ nhau.
Câu 5:
Gieo ba con súc sắc. Xác suất để được nhiều nhất hai mặt 5 là.
Câu 6:
Một bình đựng 12 quả cầu được đánh số từ 1 đến 12. Chọn ngẫu nhiên bốn quả cầu. Xác suất để bốn quả cầu được chọn có số đều không vượt quá 8.
về câu hỏi!