Câu hỏi:

10/03/2021 698

Hai đơn vị thi đấu cờ tướng A và B lần lượt có 5 người và 6 người. Cần chọn ra mỗi đơn vị 3 người để ghép cặp thi đấu với nhau. Hỏi có bao nhiêu cách thực hiện như thế?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn đáp án A

Số cách chọn 3 người từ đơn vị A là C53 cách.

Số cách chọn 3 người từ đơn vị B là C63 cách.

Lấy 1 người trong đơn vị A đi ghép cặp đấu với 1 trong 3 người ở đơn vị B, ta được 3 cách.

Lấy 1 người trong 2 người còn lại ở đơn vị A đi ghép cặp đấu với 1 trong 2 người còn lại ở đơn vị B, ta được 2 cách.

Vậy có C53.C63.3.2=1200 cách thực hiện việc ghép cặp thi đấu.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn đáp án A

Không gian mẫu Ω=C153

Trường hợp 1: Lấy 2 viên bi vàng, 1 viên bi đỏ, 0 viên bi xanh

 ⇒ có C32.C51.C70 cách chọn.

Trường hợp 2: Lấy 2 viên bi vàng, 0 viên bi đỏ, 1 viên bi xanh

 ⇒ có C32.C50.C71 cách chọn.

Trường hợp 3: Lấy 3 viên bi vàng, 0 viên bi đỏ, 0 viên bi xanh

⇒ có C33.C50.C70 cách chọn

Do đó suy ra ΩA=C32.C51.C70+C32.C50.C71+C33.C50.C70=37.

P(A)=ΩAΩ=37C153=37455.

Lời giải

Chọn C.

Không gian mẫu là mỗi người lấy ngẫu nhiên 1 phiếu.

Suy ra số phần tử của không gian mẫu là Ω=10!.

Gọi A là biến cố Người thứ ba lấy được phiếu trúng thưởng . Ta mô tả khả năng thuận lợi của biến cố A như sau:

  • Người thứ ba có C21=2 khả năng lấy được phiếu trúng thưởng.
  • 9 người còn lại có số cách lấy phiếu là 9!.

Suy ra số phần tử của biến cố  A là ΩA=2.9!.

Vậy xác suất cần tính P(A)=ΩAΩ=2.9!10!=15.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP