Câu hỏi:

19/08/2022 3,310

Cho tam giác ABC nhọn nội tiếp (O). Hai đường cao BD và CE cắt nhau tại H. Vẽ đường kính AF. Gọi M là trung điểm BC. Khi đó:

Đáp án chính xác

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 110k).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Cho tam giác ABC nhọn nội tiếp (O). Hai đường cao BD và CE cắt nhau tại H. Vẽ đường kính AF.  (ảnh 1)

Xét (O) có ACF^ = 90o;  ABF^= 90o (góc nội tiếp chắn nửa đường tròn)

Suy ra CF  AC; BF  AB mà BD  AC; CE  AB

=> BD // CF; CE // BF

=> BHCF là hình bình hành

Có M là trung điểm của BC nên M cũng là trung điểm của HF

Khi đó OM là đường trung bình của tam giác AHF nên AH = 2. OM

Đáp án cần chọn là: A

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác ABC nội tiếp đường tròn (O; R), đường cao AH, biết AB = 12cm, AC = 15cm, AH = 6cm. Tính đường kính của đường tròn (O)

Xem đáp án » 19/08/2022 3,926

Câu 2:

Tam giác ABC nội tiếp đường tròn (O; R) biết góc C^ = 45o và AB = a. Bán kính đường tròn (O) là:

Xem đáp án » 19/08/2022 2,210

Câu 3:

Cho tam giác ABC nhọn nội tiếp (O). Hai đường cao BD và CE cắt nhau tại H. Vẽ đường kính AF. Gọi M là trung điểm BC. Chọn câu sai?

Xem đáp án » 19/08/2022 1,756

Câu 4:

Cho tam giác ABC có ba góc nhọn, đường cao AH và nội tiếp đường tròn tâm (O), đường kính AM. Gọi N là giao điểm của AH với đường tròn (O). Tứ giác BCMN là hình gì?

Xem đáp án » 19/08/2022 1,502

Bình luận


Bình luận