Câu hỏi:

26/04/2021 726

Cho tam giác nhọn ABC. Gọi O là trung điểm của BC. Dựng đường tròn tâm O đường kính BC. Vẽ đường cao AD của tam giác ABC và các tiếp tuyến AM, AN với đường tròn (O) (M, N là các tiếp điểm). Gọi E là giao điểm của MN với AD. Chọn câu đúng

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án B

AM, AN là các tiếp tuyến của đường tròn (O), gọi H là giao điểm của AO và MN

Theo tính chất hai tiếp tuyến cắt nhau ta có: AM = AN; OM = ON nên AO là đường trung trực của đoạn MN

Suy ra AO  MN

Ta có tam giác AHE đồng dạng với tam giác ADO (vì AHE^=ADO^ = 90o; DAO^ chung) nên AE. AD = AH. AO (1)

Cũng theo hệ thức lượng trong tam giác vuông AMO ta có: AH. AO = AM2. (2)

Từ (1) và (2) suy ra AE. AD = AM2

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án D

Gọi O là tâm đường tròn nội tiếp tam giác đều ABC. Vậy O là giao điểm 3 đường phân giác của tam giác mà tam giác ABC đều nên O là giao điểm 3 đường trung tuyến của tam giác ABC. Vậy bán kính đường tròn (O) là OG với BG là trung tuyến của tam giác ABC

Vì tam giác ABC đều nên ta tính được:

BG = BC2CG2=8242=43 cm OG = BG3=433 cm

Câu 2

Lời giải

Đáp án C

Cho tam giác ABC nội tiếp đường tròn (O; R), AH là đường cao (H thuộc BC). chọn câu đúng (ảnh 1)

Vẽ đường kính AD của đường tròn (O), suy ra ACD^ = 90o (vì tam giác ACD có ba đỉnh thuộc đường tròn và AD là đường kính)

Xét HBA và CDA có: AHB^=ACD^ (= 90o); HBA^=CDA^ (góc nội tiếp cùng chắn)

Do đó HBA  CDAAHAC=ABAD AB. AC = AD. AH

Mà AD = 2R, do đó AB. AC = 2R. AH

 

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP