Câu hỏi:
28/05/2021 2,172Trong mặt phẳng Oxy, cho tam giác ABC có A (−4; −1), hai đường cao BH và CK có phương trình lần lượt là 2x – y + 3 = 0 và 3x + 2y – 6 = 0. Viết phương trình đường thẳng BC và tính diện tích tam giác ABC
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
+ BH có véctơ pháp tuyến (2; −1). CK có véctơ pháp tuyến (3; 2).
+ Đường thẳng AB vuông góc CK nên nhận (3; 2). làm véctơ chỉ phương, vì thế AB có véctơ pháp tuyến (2; −3). Mặt khác AB đi qua A (−4; −1) nên có phương trình:
2(x + 4) − 3(y + 1) = 0 ⇔ 2x − 3y + 5 = 0.
+ Đường thẳng AC vuông góc BH nên nhận (2; −1) làm véctơ chỉ phương, vì thế AC có véctơ pháp tuyến (1; 2). Mặt khác AC đi qua A (−4; −1) nên có phương trình:
1(x + 4) + 2(y + 1) = 0 ⇔ x + 2y + 6 = 0.
+ B là giao điểm của AB và BH. Xét hệ:
⇒ B (−1; 1).
+ C là giao điểm của AC và CK. Xét hệ
+ Đường thẳng BC có véctơ chỉ phương là = (7; −7) nên có véctơ pháp tuyến là = (7; 7). Vậy BC có phương trình: 7(x + 1) + 7(y − 1) = 0 ⇔ x + y = 0
+ Chiều cao kẻ từ A của tam giác ABC là
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho A (1; −1), B (3; 2). Tìm M trên trục Oy sao cho MA2 + MB2 nhỏ nhất.
Câu 2:
Trong mặt phẳng tọa độ Oxy, cho điểm M (4; 1), đường thẳng d qua M, d cắt tia Ox, Oy lần lượt tại A (a; 0), B (0; b) sao cho tam giác ABO (O là gốc tọa độ) có diện tích nhỏ nhất. Giá trị a − 4b bằng
Câu 3:
Cho đường tròn (C): x2 + y2 − 2x + 2y – 7 = 0 và đường thẳng d: x + y + 1 = 0. Tìm tất cả các đường thẳng song song với đường thẳng d và cắt đường tròn (C) theo dây cung có độ dài bằng 2
Câu 4:
Trong mặt phẳng tọa độ Oxy, tam giác ABC có đỉnh A (−1; 2), trực tâm H (−3; −12), trung điểm của cạnh BC là M (4; 3). Gọi I, R lần lượt là tâm, bán kính đường tròn ngoại tiếp tam giác ABC. Chọn khẳng định đúng trong các khẳng định sau
Câu 5:
Trong mặt phẳng tọa độ Oxy, cho ba điểm A (1; 0), B (0; 5) và C (−3; −5). Tìm tọa độ điểm M thuộc trục Oy sao cho đạt giá trị nhỏ nhất?
Câu 6:
Trong mặt phẳng với hệ tọa độ Oxy cho đường thẳng Δ: x − 2y – 5 = 0 và các điểm A (1; 2), B (−2; 3), C (−2; 1). Viết phương trình đường thẳng d, biết đường thẳng d đi qua gốc tọa độ và cắt đường thẳng Δ tại điểm M sao cho: nhỏ nhất
Câu 7:
Cho tam giác ABC có và hai trong ba đường phân giác trong có phương trình lần lượt là x − 2y – 1 = 0, x + 3y – 1 = 0. Viết phương trình đường thẳng chứa cạnh BC.
về câu hỏi!